The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006533 Join n equal points around circle in all ways, count regions. (Formerly M1118) 18
 1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 6196, 6842, 9109, 9048, 12951, 14014, 17902, 19208, 24158, 21510, 31931, 33888, 41449, 43826, 52956, 52992, 66712, 70034, 82993, 86840, 102091, 97776, 124314, 129448, 149986, 155894, 179447, 179280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence and A007678 are two equivalent ways of presenting the same sequence. - N. J. A. Sloane, Jan 23 2020 In contrast to A007678, which only counts the polygons, this sequence also counts the n segments of the circle bounded by the arc of the circle and the straight line, both joining two neighboring points on the circle. Therefore, a(n) = A007678(n) + n. - M. F. Hasler, Dec 12 2021 REFERENCES Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Sascha Kurz, m-gons in regular n-gons J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975 Burkard Polster (Mathologer), The hardest "What comes next?" (Euler's pentagonal formula), Youtube video, Oct 17 2020. B. Poonen and M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, No. 1 (1998), pp. 135-156. (Author's copy.). B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG]; some typos in the published version are corrected in the revisions from 2006. B. Poonen and M. Rubinstein, Mathematica programs for these sequences M. Rubinstein, Drawings for n=4,5,6,... FORMULA Poonen and Rubinstein give an explicit formula for a(n) (see Mma code). a(n) = A007678(n) + n. - T. D. Noe, Dec 23 2006 MATHEMATICA del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; R[n_]:=(n^4-6n^3+23n^2-18n+24)/24 + del[2, n](-5n^3+42n^2-40n-48)/48 - del[4, n](3n/4) + del[6, n](-53n^2+310n)/12 + del[12, n](49n/2) + del[18, n]*32n + del[24, n]*19n - del[30, n]*36n - del[42, n]*50n - del[60, n]*190n - del[84, n]*78n - del[90, n]*48n - del[120, n]*78n - del[210, n]*48n; Table[R[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *) PROG (Python) def d(n, m): return not n % m def A006533(n): return (1176*d(n, 12)*n - 3744*d(n, 120)*n + 1536*d(n, 18)*n - d(n, 2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n, 210)*n + 912*d(n, 24)*n - 1728*d(n, 30)*n - 36*d(n, 4)*n - 2400*d(n, 42)*n - 4*d(n, 6)*n*(53*n - 310) - 9120*d(n, 60)*n - 3744*d(n, 84)*n - 2304*d(n, 90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 36*n)//48 + 1 # Chai Wah Wu, Mar 08 2021 (PARI) apply( {A006533(n)=if(n%2, (((n-6)*n+23)*n-18)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 19, 28) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021 CROSSREFS Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file. Sequence in context: A164256 A164240 A164214 * A164188 A164186 A164187 Adjacent sequences:  A006530 A006531 A006532 * A006534 A006535 A006536 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu) EXTENSIONS Added more terms from b-file. - N. J. A. Sloane, Jan 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 17:42 EDT 2022. Contains 353957 sequences. (Running on oeis4.)