login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006533
Place n equally-spaced points around a circle and join every pair of points by a chord; this divides the circle into a(n) regions.
(Formerly M1118)
23
1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 6196, 6842, 9109, 9048, 12951, 14014, 17902, 19208, 24158, 21510, 31931, 33888, 41449, 43826, 52956, 52992, 66712, 70034, 82993, 86840, 102091, 97776, 124314, 129448, 149986, 155894, 179447, 179280
OFFSET
1,2
COMMENTS
This sequence and A007678 are two equivalent ways of presenting the same sequence. - N. J. A. Sloane, Jan 23 2020
In contrast to A007678, which only counts the polygons, this sequence also counts the n segments of the circle bounded by the arc of the circle and the straight line, both joining two neighboring points on the circle. Therefore a(n) = A007678(n) + n. - M. F. Hasler, Dec 12 2021
REFERENCES
Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975
Burkard Polster (Mathologer), The hardest "What comes next?" (Euler's pentagonal formula), Youtube video, Oct 17 2020.
Bjorn Poonen and Michael Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, No. 1 (1998), pp. 135-156. (Author's copy.).
Bjorn Poonen and Michael Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG]; some typos in the published version are corrected in the revisions from 2006.
Bjorn Poonen and Michael Rubinstein, Mathematica programs for these sequences
Michael Rubinstein, Drawings for n=4,5,6,...
Prasad Balakrishnan Warrier, The physiognomy of the Erdős-Szekeres conjecture (happy ending problem), Math. Student (Indian Math. Soc., 2024) Vol. 93, Nos. 3-4, 28-48.
FORMULA
Poonen and Rubinstein give an explicit formula for a(n) (see Mma code).
a(n) = A007678(n) + n. - T. D. Noe, Dec 23 2006
MATHEMATICA
del[m_, n_]:=If[Mod[n, m]==0, 1, 0];
R[n_]:=(n^4-6n^3+23n^2-18n+24)/24 + del[2, n](-5n^3+42n^2-40n-48)/48 - del[4, n](3n/4) + del[6, n](-53n^2+310n)/12 + del[12, n](49n/2) + del[18, n]*32n + del[24, n]*19n - del[30, n]*36n - del[42, n]*50n - del[60, n]*190n - del[84, n]*78n - del[90, n]*48n - del[120, n]*78n - del[210, n]*48n;
Table[R[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *)
PROG
(Python)
def d(n, m): return not n % m
def A006533(n): return (1176*d(n, 12)*n - 3744*d(n, 120)*n + 1536*d(n, 18)*n - d(n, 2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n, 210)*n + 912*d(n, 24)*n - 1728*d(n, 30)*n - 36*d(n, 4)*n - 2400*d(n, 42)*n - 4*d(n, 6)*n*(53*n - 310) - 9120*d(n, 60)*n - 3744*d(n, 84)*n - 2304*d(n, 90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 36*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
(PARI) apply( {A006533(n)=if(n%2, (((n-6)*n+23)*n-18)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 19, 28) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
CROSSREFS
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Sequence in context: A164256 A164240 A164214 * A164188 A164186 A164187
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)
EXTENSIONS
Added more terms from b-file. - N. J. A. Sloane, Jan 23 2020
Edited definition. - N. J. A. Sloane, Mar 17 2024
STATUS
approved