OFFSET
1,2
COMMENTS
I.e., vertex count of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
Also the circumference of the n-polygon diagonal intersection graph (since these graphs are Hamiltonian). - Eric W. Weisstein, Mar 08 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
Sascha Kurz, m-gons in regular n-gons
B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998).
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006; arXiv version, which has fewer typos than the SIAM version.
B. Poonen and M. Rubinstein, Mathematica programs for these sequences
M. Rubinstein, Drawings for n=4,5,6,...
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
Eric Weisstein's World of Mathematics, Graph Circumference
Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
Eric Weisstein's World of Mathematics, Vertex Count
Robert G. Wilson v, Illustration of a(10)
FORMULA
If n is odd, a(n) = binomial(n,4) + n. - N. J. A. Sloane, Aug 30 2021
MATHEMATICA
del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; Int[n_]:=If[n<4, n, n + Binomial[n, 4] + del[2, n](-5n^3+45n^2-70n+24)/24 - del[4, n](3n/2) + del[6, n](-45n^2+262n)/6 + del[12, n]*42n + del[18, n]*60n + del[24, n]*35n - del[30, n]*38n - del[42, n]*82n - del[60, n]*330n - del[84, n]*144n - del[90, n]*96n - del[120, n]*144n - del[210, n]*96n]; Table[Int[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *)
PROG
(Python)
def d(n, m): return not n % m
def A007569(n): return 2 if n == 2 else n*(42*d(n, 12) - 144*d(n, 120) + 60*d(n, 18) - 96*d(n, 210) + 35*d(n, 24)- 38*d(n, 30) - 82*d(n, 42) - 330*d(n, 60) - 144*d(n, 84) - 96*d(n, 90)) + (n**4 - 6*n**3 + 11*n**2 + 18*n -d(n, 2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n, 4)*n - 4*d(n, 6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)
STATUS
approved