OFFSET
3,1
COMMENTS
Also the number of ballot sequences of length n where 3 is the position of the last occurrence of the minimal value.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 3..1000
Wikipedia, Young tableau
FORMULA
Recurrence: see Maple program.
a(n) ~ 3^(n-3/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 11 2014
EXAMPLE
a(4) = 3:
[1 3] [1 3] [1 2 3]
[2] [2 4] [4]
[4]
MAPLE
a:= proc(n) option remember; `if`(n<5, [0$3, 2, 3][n+1],
((n-2)*(30*n^4-505*n^3+3108*n^2-8147*n+7338)*a(n-1)
+(18703*n^3-76648*n^2+154520*n-122616-2240*n^4+105*n^5)*a(n-2)
-2*(n-5)*(60*n^4-965*n^3+5766*n^2-15082*n+14364)*a(n-3)
-12*(n-5)*(n-6)*(15*n^3-185*n^2+744*n-994)*a(n-4)) /
((n-1)*(n-2)*(15*n^3-230*n^2+1159*n-1938)))
end:
seq(a(n), n=3..40);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + Function[{p}, p+(x^(1 + Total[l])-1)*Coefficient[p, x, 0]][b[n-1, Append[l, 1]]]]; a[n_] := Coefficient[ b[n, {}], x, 3]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 3, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple code in A238794 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jul 09 2014
STATUS
approved