login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245001
Number of standard Young tableaux with n cells and 3 as last value in the first row.
2
2, 3, 5, 10, 19, 41, 86, 197, 449, 1087, 2650, 6722, 17227, 45267, 120069, 323442, 877777, 2405399, 6628760, 18384040, 51204735, 143252991, 402115301, 1132464571, 3197928097, 9053803101, 25689876776, 73047889402, 208100836969, 593897902349, 1697686011406
OFFSET
3,1
COMMENTS
Also the number of ballot sequences of length n where 3 is the position of the last occurrence of the minimal value.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 3..1000
Wikipedia, Young tableau
FORMULA
Recurrence: see Maple program.
a(n) ~ 3^(n-3/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 11 2014
EXAMPLE
a(4) = 3:
[1 3] [1 3] [1 2 3]
[2] [2 4] [4]
[4]
MAPLE
a:= proc(n) option remember; `if`(n<5, [0$3, 2, 3][n+1],
((n-2)*(30*n^4-505*n^3+3108*n^2-8147*n+7338)*a(n-1)
+(18703*n^3-76648*n^2+154520*n-122616-2240*n^4+105*n^5)*a(n-2)
-2*(n-5)*(60*n^4-965*n^3+5766*n^2-15082*n+14364)*a(n-3)
-12*(n-5)*(n-6)*(15*n^3-185*n^2+744*n-994)*a(n-4)) /
((n-1)*(n-2)*(15*n^3-230*n^2+1159*n-1938)))
end:
seq(a(n), n=3..40);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + Function[{p}, p+(x^(1 + Total[l])-1)*Coefficient[p, x, 0]][b[n-1, Append[l, 1]]]]; a[n_] := Coefficient[ b[n, {}], x, 3]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 3, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple code in A238794 *)
CROSSREFS
Column k=3 of A238794.
Sequence in context: A293328 A064236 A339585 * A365858 A007569 A054317
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jul 09 2014
STATUS
approved