The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238794 Number T(n,k) of standard Young tableaux with n cells and k as last value in the first row; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 10
 1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 3, 4, 0, 1, 3, 5, 7, 10, 0, 1, 6, 10, 14, 19, 26, 0, 1, 10, 19, 29, 41, 56, 76, 0, 1, 20, 41, 66, 96, 132, 176, 232, 0, 1, 35, 86, 152, 232, 327, 441, 582, 764, 0, 1, 70, 197, 374, 596, 863, 1181, 1563, 2031, 2620 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS T(0,0) = 1 by convention. Also the number of ballot sequences of length n where k is the position of the last occurrence of the minimal value. Diagonal: T(n,n) = A000085(n-1) for n>=1. Columns k=0-10 give: A000007, A000012 for n>0, A001405(n-2) for n>1, A245001, A245002, A245003, A245004, A245005, A245006, A245007, A245008. T(2n,n) gives A245000. Row sums give A000085. LINKS Joerg Arndt and Alois P. Heinz, Rows n = 0..50, flattened Wikipedia, Young tableau EXAMPLE The 10 tableaux with n=4 cells sorted by last value in the first row: :[1]:[1 2] [1 2]:[1 3] [1 3] [1 2 3]:[1 4] [1 2 4] [1 3 4] [1 2 3 4]: :[2]:[3]   [3 4]:[2]   [2 4] [4]    :[2]   [3]     [2]              : :[3]:[4]        :[4]                :[3]                            : :[4]:           :                   :                               : : 1 : ----2---- : --------3-------- : --------------4-------------- : Their corresponding ballot sequences are: [1,2,3,4], [1,1,2,3], [1,1,2,2], [1,2,1,3], [1,2,1,2], [1,1,1,2], [1,2,3,1], [1,1,2,1], [1,2,1,1], [1,1,1,1].  Thus row 4 = [0, 1, 2, 3, 4]. Triangle T(n,k) begins: 00:   1; 01:   0, 1; 02:   0, 1,  1; 03:   0, 1,  1,   2; 04:   0, 1,  2,   3,   4; 05:   0, 1,  3,   5,   7,  10; 06:   0, 1,  6,  10,  14,  19,  26; 07:   0, 1, 10,  19,  29,  41,  56,   76; 08:   0, 1, 20,  41,  66,  96, 132,  176,  232; 09:   0, 1, 35,  86, 152, 232, 327,  441,  582,  764; 10:   0, 1, 70, 197, 374, 596, 863, 1181, 1563, 2031, 2620; MAPLE b:= proc(n, l) option remember; `if`(n=0, 1, add(`if`(       i=1 or l[i-1]>l[i], b(n-1, subsop(i=l[i]+1, l)), 0),       i=1..nops(l)) +(p-> p+(x^(1+add(j, j=l))-1)*       coeff(p, x, 0))(b(n-1, [l[], 1])))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, [])): seq(T(n), n=0..12); MATHEMATICA b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + Function[{p}, p + (x^(1+Total[l])-1)*Coefficient[p, x, 0]][b[n-1, Append[l, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, {}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 13 2015, translated from Maple *) CROSSREFS Sequence in context: A218601 A350603 A262678 * A135317 A332663 A227179 Adjacent sequences:  A238791 A238792 A238793 * A238795 A238796 A238797 KEYWORD nonn,tabl AUTHOR Joerg Arndt and Alois P. Heinz, Mar 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 15:04 EDT 2022. Contains 354115 sequences. (Running on oeis4.)