Art and Sequences

"If you can't solve it, make art"
"I can't get interested in a sequence unless it leads to a beautiful picture"

Neil J. A. Sloane

Math. Dept., Rutgers University, and The OEIS Foundation, Highland Park, Nj; njasloane@gmail.com
in collaboration with Scott R. Shannon
(oeis.org/wiki/User:Scott R. Shannon)

Guest lecture, Math 640, Rutgers University

February 6, 2020

Outline:

- Three amazing illustrations of sequences
- Stained-glass windows - Rose windows
- Rectangular windows
- Points on a line

Wild sequence, simple definition, growth is mystery
A329544 (Angelini and Falcoz, Nov. 2019)
Lex earliest sequence of distinct positive numbers s.t. if add odd terms, and subtract even terms, result is always a (positive) palindrome

$$
\begin{array}{llllll}
1 & 3 & 2 & 5 & 4 & \ldots \\
1 & 4 & 2 & 7 & 3 & \ldots
\end{array}
$$

$1,3,2,5,4,19,11,22,6,17,14,8,7,15,16,27,24,13,18$,

A329544

200,000
A329544
odd
even

A329985 (Rémy Sigrist)

$\mathbf{a}(\mathbf{n}+1)=\mathbf{a}(\mathbf{k})-\mathbf{a}(\mathrm{n})$, where $\mathbf{k}=$ number of times $\mathbf{a}(\mathrm{n})$ appeared in first n terms.

A330189 Scott Shannon

Knight on square spiral, move to unvisited cell with fewest visited nbs,
if a tie choose lowest spiral number

Stained-Glass

 Windows
Our story begins in France 1967 ...

France I967

Amiens

Chartres, France

Counting intersection

points of regular polygons

with all diagonals drawn

Letter from Jean Meeus in 1974:

A6561: 1, 5, 13, 35, 49, 126, ...
Number of (internal) intersection points of all diagonals
A7569 = total number of points; A7678 = number of regions; A135563 = no. of edges

BELL LABS, 1990's , I put problem on blackboard in Commons Room

Solved by Bjorn Poonen and Michael Rubinstein, SIAM J Disc. Math., I998:

Number of interior vertices is
$\binom{n}{4}+\left(-5 n^{3}+45 n^{2}-70 n+24\right) / 24 \cdot \delta_{2}(n)-(3 n / 2) \cdot \delta_{4}(n)$
$+\left(-45 n^{2}+262 n\right) / 6 \cdot \delta_{6}(n)+42 n \cdot \delta_{12}(n)+60 n \cdot \delta_{18}(n)$
$+35 n \cdot \delta_{24}(n)-38 n \cdot \delta_{30}(n)-82 n \cdot \delta_{42}(n)-330 n \cdot \delta_{60}(n)$
$-144 n \cdot \delta_{84}(n)-96 n \cdot \delta_{90}(n)-144 n \cdot \delta_{120}(n)-96 n \cdot \delta_{210}(n)$.
where $\delta_{4}(n)=1$ iff 4 divides n, \ldots
In particular, if n is odd, $a(n)=\binom{n}{4}$
A6561

The triple point lemma:
NASC for 3 diagonals to meet at a point:

$$
\sin \pi U \sin \pi V \sin \pi W=\sin \pi X \sin \pi Y \sin \pi Z
$$

$$
U+V+W+X+Y+Z=1
$$

Equivalently:

\exists rationals $\alpha_{1}, \ldots, \alpha_{6}$ such that

$$
\begin{gathered}
\sum_{j=1 . .6}\left(e^{i \pi \alpha_{j}}+e^{-i \pi \alpha_{j}}\right)=1 \\
\alpha_{1}+\cdots+\alpha_{6}=1
\end{gathered}
$$

Here, $\alpha_{1}=V+W-U-\frac{1}{2}$, etc.

$$
U=\frac{u}{2 \pi}, \text { etc. }
$$

A7678 Scott Shannon 23 points

Homework 1

Program in Maple:

1. Input n, construct complete graph K_n, count and output Regions, Edges, Vertices from the graph, check against the formulas in A007678. A135565, A007569.
2. Input n, output colored picture Rose.n.pdf (or .png)

Rectangular Windows

$$
m=3, n=3,
$$

$2(m+n)$ perimeter points, join every pair by a line segment

$$
\begin{aligned}
& R=340 \text { regions, } \\
& E=596 \text { edges } \\
& V=257 \text { vertices }
\end{aligned}
$$

Euler: R-E + V = $\mathbf{1}$

Scott Shannon

Rectangular Windows
Need more terms for this table!

OFFS ENTRIES: REGIONS A331452
EDE A331454
VERTIGO NE31453

Only the first column (the m X 1 windows) is solved

$m=2$

etc

Studied via the
complete bipartite graph

$$
K _\{n+1, n+1\}
$$

Solved by:
S. Legendre, J. Integer Seqs. 12 (2009);
M. Griffiths, J. Integer Seqs. 13 (2010);

Max Alekseyev, SIAM J. Discr. Math. 24 (2010);
Alekseyev, Basova, Zolotykh, SIAM J. Disc. Math. 29 (2015

From the Griffives artide

The K_\{n,n\} graph

IF $E_{i j}$ MEETS $E_{p q}$ EITHER $1 \leqslant p<0, j \leqslant q$ OR $i<p, 1 \leqslant q<j$

WRITE

$$
\begin{aligned}
& \text { TE }=i+k a \\
& p=j-k b \\
& q=j-1 \\
& \operatorname{gcd}(a, b)=1
\end{aligned}
$$

THEN

$$
x=\frac{a}{a+b}, y=\frac{a j+b i}{a+b}
$$

\# REGIONS IN $K_{n, n}$ GRAPH is

$$
\begin{aligned}
R(n)=(n-1)^{2}+ & \sum_{1 \leq a, b,<}(n-a)(n-b) \\
& \operatorname{gcd}(a, b)=1
\end{aligned}
$$

The m X 1 windows, continued

$$
\text { Number of regions } \quad R(m)=V(m, m)+m^{\wedge} 2+2 m \quad \text { where }
$$

$$
V(m, m)=\sum_{i=1 . . m} \sum_{j=1 . . m ; \operatorname{gcd}(i, j)=1}(m+1-i)(m+1-j)
$$

Similar formulas for $E=n o$ of edges, $V=$ no of vertices

The m X 1 windows, continued

$$
\begin{aligned}
& R=\text { no. of regions }=A 306302=4,16,46,104, \ldots \\
& E=\text { no. of edges }=A 331757=8,28,80,178, \ldots \\
& V=\text { no. of vertices }=A 331755=5,13,35,75, \ldots
\end{aligned}
$$

Remarkable: There are 8 sequences in OEIS that are equivalent to the R sequence:
A306302, A290131, A114043, A115004*, A115005, A141255, A088658, A114146
[No of ways to divide $m X m$ grid into two parts by a straight line; threshold functions; no. of triangles of area 1/2 in grid; etc.]

The general $\mathrm{m} X \mathrm{n}$ rectangular window is unsolved

3×2
(Scott Shannon)

Need versions of the triple point lemma for integer points on boundary of square grid

The m X 2 case might be very interesting!
See A331763, A331765, A331766

Homework 2

Program in Maple:

Given m and n, build the $m X n$ rectangular window, output the number of Regions, Edges, Vertices

Draw graph underlying the window
Produce colored graph

Find formulas for the numbers!

Especially the first unsolved case, $\mathrm{n}=2$

Other Shapes (Crosses, Stars, etc)

(No formulas known!)

Points on a line

Take n equally-spaced points on a line and join by

semi-circles: how many intersection points?

The math problems web site http://www.zahlenjagd.at

Problem for Winter 2010 says:

Gegeben sind 10 Punkte in gleichem Abstand auf einer Geraden. Darüber sind alle möglichen Halbkreise errichtet, deren Durchmesser jeweils 2 der 10 Punkte verbindet.

Wieviele Schnittpunkte haben diese Halbkreise?
A290447

6 points on line, A290447(6) = 15 intersection points

```
Illustration of A290447(n): Enter the number of points, n=6
```


[Torsten Sillke, Maximilian Hasler]

10 points on line, $\mathrm{A} 290447(\mathrm{I} 0)=200$ intersection points

```
Illustration of A290447(n): Enter the number of points, \(n=10\)
```


David Applegate found first 500 terms:

$$
\begin{aligned}
& 0,0,0,1,5,15,35,70,124,200,300,445,627 \text {, } \\
& 875,1189,1564,2006,2568,3225, \ldots
\end{aligned}
$$

Lemma (David Applegate)

$\mathbb{P}=(x, y)$ with

$$
\begin{aligned}
& x=\frac{x_{3} x_{4}-x_{1} x_{2}}{x_{3}+x_{4}-x_{1}-x_{2}} \\
& y^{2}=\frac{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{4}-x_{2}\right)}{\left(x_{3}+x_{4}-x_{1}-x_{2}\right)^{2}}
\end{aligned}
$$

A290447 continued

No formula or recurrence is known

$$
a(n) \leq\binom{ n}{4} \quad \text { with }=\text { iff } n \leq 8
$$

Comparison	rose window	semicircles
\# points	A656I	A290447
\# regions	A6533	A290865
\# k-fold inter. points	A292105	A290867

Reference: Scott R. Shannon and N. J. A. Sloane, Graphical Enumeration Problems and Stained Glass Windows, In preparation, 2020

