login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007566
a(n+1) = (2n+3)*a(n) - 2n*a(n-1) + 8n, a(0) = 1, a(1) = 3.
(Formerly M3081)
3
1, 3, 21, 151, 1257, 12651, 151933, 2127231, 34035921, 612646867, 12252937701, 269564629863, 6469551117241, 168208329048891, 4709833213369677, 141294996401091151, 4521439884834917793, 153728956084387206051, 5534242419037939419061, 210301211923441697925687
OFFSET
0,2
REFERENCES
M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 36. [From N. J. A. Sloane, Jan 29 2009]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Doster, Problem 10403, Amer. Math. Monthly, Vol. 101 (1994), p. 792; Solution, Vol. 104 (1997), p. 368.
FORMULA
a(n) = 2*n*a(n-1) + (2*n-1)^2 = 2 * floor(e^(1/2) * n! * 2^n) - (2*n+1) = 2*A010844(n) - (2n+1). - Michael Somos, Mar 26 1999
EXAMPLE
1 + 3*x + 21*x^2 + 151*x^3 + 1257*x^4 + 12651*x^5 + 151933*x^6 + 2127231*x^7 + ...
MAPLE
a:=proc(n) option remember; if n = 0 then RETURN(1); fi; if n = 1 then RETURN(3); fi; (2*n+1)*a(n-1)-(2*n-2)*a(n-2) + 8*(n-1); end;
CROSSREFS
Cf. A010844.
Sequence in context: A037768 A037656 A074577 * A183412 A155627 A163472
KEYWORD
nonn,easy
STATUS
approved