login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163472
a(n) = 12*a(n-1) - 33*a(n-2) for n > 1; a(0) = 3, a(1) = 21.
3
3, 21, 153, 1143, 8667, 66285, 509409, 3925503, 30295539, 234004869, 1808305641, 13977507015, 108055998027, 835414244829, 6459123003057, 49940805957327, 386138612387043, 2985616752052725, 23084826815860281, 178492568972583447
OFFSET
0,1
COMMENTS
Binomial transform of A163471. Inverse binomial transform of A163473.
FORMULA
a(n) = ((3+sqrt(3))*(6+sqrt(3))^n + (3-sqrt(3))*(6-sqrt(3))^n)/2.
G.f.: (3-15*x)/(1-12*x+33*x^2).
E.g.f.: exp(6*x)*( 3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x) ). - G. C. Greubel, Jul 26 2017
MATHEMATICA
LinearRecurrence[{12, -33}, {3, 21}, 50] (* G. C. Greubel, Jul 26 2017 *)
PROG
(Magma) [ n le 2 select 18*n-15 else 12*Self(n-1)-33*Self(n-2): n in [1..20] ];
(PARI) x='x+O('x^50); Vec((3-15*x)/(1-12*x+33*x^2)) \\ G. C. Greubel, Jul 26 2017
CROSSREFS
Sequence in context: A007566 A183412 A155627 * A229809 A074575 A091171
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 11 2009
STATUS
approved