login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163475
a(n) = 18*a(n-1) - 78*a(n-2) for n > 1; a(0) = 3, a(1) = 30.
3
3, 30, 306, 3168, 33156, 349704, 3708504, 39476160, 421307568, 4504395744, 48217133088, 516565527552, 5537243115072, 59378264922240, 636903805624704, 6832763837309952, 73311252232852224, 786646960881163776
OFFSET
0,1
COMMENTS
Binomial transform of A163474. Inverse binomial transform of A163476.
FORMULA
a(n) = ((3+sqrt(3))*(9+sqrt(3))^n + (3-sqrt(3))*(9-sqrt(3))^n)/2.
G.f.: (3-24*x)/(1-18*x+78*x^2).
E.g.f.: exp(9*x)*( 3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x) ). - G. C. Greubel, Jul 26 2017
MATHEMATICA
LinearRecurrence[{18, -78}, {3, 30}, 50] (* G. C. Greubel, Jul 26 2017 *)
PROG
(Magma) [ n le 2 select 27*n-24 else 18*Self(n-1)-78*Self(n-2): n in [1..18] ];
(PARI) x='x+O('x^50); Vec((3-24*x)/(1-18*x+78*x^2)) \\ G. C. Greubel, Jul 26 2017
CROSSREFS
Sequence in context: A037771 A037659 A131586 * A200142 A339626 A160473
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 11 2009
STATUS
approved