login
A163475
a(n) = 18*a(n-1) - 78*a(n-2) for n > 1; a(0) = 3, a(1) = 30.
3
3, 30, 306, 3168, 33156, 349704, 3708504, 39476160, 421307568, 4504395744, 48217133088, 516565527552, 5537243115072, 59378264922240, 636903805624704, 6832763837309952, 73311252232852224, 786646960881163776
OFFSET
0,1
COMMENTS
Binomial transform of A163474. Inverse binomial transform of A163476.
FORMULA
a(n) = ((3+sqrt(3))*(9+sqrt(3))^n + (3-sqrt(3))*(9-sqrt(3))^n)/2.
G.f.: (3-24*x)/(1-18*x+78*x^2).
E.g.f.: exp(9*x)*( 3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x) ). - G. C. Greubel, Jul 26 2017
MATHEMATICA
LinearRecurrence[{18, -78}, {3, 30}, 50] (* G. C. Greubel, Jul 26 2017 *)
PROG
(Magma) [ n le 2 select 27*n-24 else 18*Self(n-1)-78*Self(n-2): n in [1..18] ];
(PARI) x='x+O('x^50); Vec((3-24*x)/(1-18*x+78*x^2)) \\ G. C. Greubel, Jul 26 2017
CROSSREFS
Sequence in context: A037771 A037659 A131586 * A200142 A339626 A160473
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 11 2009
STATUS
approved