login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163470
a(n) = 8*a(n-1) - 13*a(n-2) for n > 1; a(0) = 3, a(1) = 15.
2
3, 15, 81, 453, 2571, 14679, 84009, 481245, 2757843, 15806559, 90600513, 519318837, 2976744027, 17062807335, 97804786329, 560621795277, 3213512139939, 18420013780911, 105584452428081, 605215440272805
OFFSET
0,1
COMMENTS
Binomial transform of A083881 without initial 1. Inverse binomial transform of A163471.
FORMULA
a(n) = ((3+sqrt(3))*(4+sqrt(3))^n + (3-sqrt(3))*(4-sqrt(3))^n)/2.
G.f.: (3-9*x)/(1-8*x+13*x^2).
a(n) = 3*A162557(n). - R. J. Mathar, Jun 14 2016
E.g.f.: (1/2)*exp(4*x)*(6*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x)). - G. C. Greubel, Jul 25 2017
MATHEMATICA
LinearRecurrence[{8, -13}, {3, 15}, 50] (* G. C. Greubel, Jul 25 2017 *)
PROG
(Magma) [ n le 2 select 12*n-9 else 8*Self(n-1)-13*Self(n-2): n in [1..22] ];
(PARI) x='x+O('x^50); Vec((3-9*x)/(1-8*x+13*x^2)) \\ G. C. Greubel, Jul 25 2017
CROSSREFS
Sequence in context: A233020 A246020 A084120 * A122868 A264225 A343975
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 11 2009
STATUS
approved