login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163467
a(n) = floor(p/2) * floor(floor(p/2)/2) * floor(floor(floor(p/2)/2)/2) * ... * 1, where p=prime(n).
2
1, 1, 2, 3, 10, 18, 64, 72, 110, 294, 315, 1296, 2000, 2100, 2530, 6084, 8526, 9450, 33792, 38080, 46656, 53352, 82000, 106480, 248832, 270000, 275400, 322452, 341172, 460992, 615195, 2129920, 2515456, 2552448, 3548448, 3596400, 4161456
OFFSET
1,3
COMMENTS
Cumulative product of the residuals of a repeated shift-right operation on the base-2 representation of prime(n).
LINKS
EXAMPLE
For n=6, p=13, the intermediate factors are floor(13/2)=6, floor(6/2)=3, floor(3/2)=1, which yield a(6)=6*3*1=18.
For n=7, p=17, floor(17/2)=8, floor(8/2)=4, floor(4/2)=2, floor(2/2)=1, which yield a(7)=8*4*2*1=64.
MATHEMATICA
lst={}; Do[p=Prime[n]; s=1; While[p>1, p=IntegerPart[p/2]; s*=p; ]; AppendTo[lst, s], {n, 5!}]; lst
Table[Times@@Rest[NestWhileList[Floor[#/2]&, Prime[n], #>1&]], {n, 40}] (* Harvey P. Dale, Jul 05 2019 *)
PROG
(PARI) a(n) = my(p=prime(n), k=1); while(p!=1, k *= p\2; p = p\2); k; \\ Michel Marcus, Jul 26 2017
CROSSREFS
Cf. A098844.
Sequence in context: A298345 A057507 A233895 * A143045 A156909 A215121
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More divisions and primes mentioned in the definition by R. J. Mathar, Aug 02 2009
STATUS
approved