The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156909 G.f.: A(x) = 1 + x*exp( Sum_{k>=1} [A(-(-1)^k*x) - 1]^k/k ). 1
 1, 1, 1, 2, 3, 10, 18, 70, 135, 566, 1134, 4972, 10206, 46098, 96228, 443946, 938223, 4397730, 9382230, 44523232, 95698746, 458639492, 991787004, 4791683932, 10413763542, 50652087010, 110546105292, 540758574440, 1184422556700 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA From Paul D. Hanna, Mar 05 2009: (Start) G.f.: A(x) = B(x) + sqrt(12*B(x) - 12 - 3*x^2)/3 where B(x) = (7-sqrt(1-12*x^2))/6 = A(x)*A(-x) = (A(x)+A(-x))/2 = 1 + x^2/(4-3*B(x)). Lim_{n->infinity} a(2n)/a(2n-1) = 12^(1/3); lim_{n->infinity} a(2n+1)/a(2n) = 12^(2/3). (End) EXAMPLE G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 18*x^6 + 70*x^7 + ... ... A(x) = 1 + x*exp( [A(x)-1] + [A(-x)-1]^2/2 + [A(x)-1]^3/3 + [A(-x)-1]^4/4 + ...). PROG (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*exp(-sum(k=1, n, (subst(A, x, (-1)^k*x+x*O(x^n))-1)^k/k))); polcoeff(A, n)} (PARI) {a(n)=local(B=(7-sqrt(1-12*x^2+x^2*O(x^n)))/6); polcoeff(B+sqrt(B^2-B), n)} \\ Paul D. Hanna, Mar 05 2009 CROSSREFS Cf. A156907, A156908. Cf. A157674. - Paul D. Hanna, Mar 05 2009 Sequence in context: A233895 A163467 A143045 * A215121 A329850 A175569 Adjacent sequences:  A156906 A156907 A156908 * A156910 A156911 A156912 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 13:46 EDT 2021. Contains 343823 sequences. (Running on oeis4.)