login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157674 G.f.: A(x) = 1 + x/exp( Sum_{k>=1} (A((-1)^k*x) - 1)^k/k ). 5
1, 1, 1, -1, -3, 1, 9, 1, -27, -13, 81, 67, -243, -285, 729, 1119, -2187, -4215, 6561, 15505, -19683, -56239, 59049, 202309, -177147, -724499, 531441, 2589521, -1594323, -9254363, 4782969, 33111969, -14348907, -118725597, 43046721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..200

FORMULA

G.f.: A(x) = sqrt(1+4*x^2)/(sqrt(1+4*x^2) - x).

a(n) = Sum(k=1..n-1, (k*Sum(j=0..n, j*2^j*(-1)^j*binomial(n,j)* binomial(2*(n-k)-j-1,n-k-1)))/(n*(n-k)))+(-1)^(n-1) n>0, a(0)=1. - Vladimir Kruchinin, Apr 17 2011

a(2*n) = (-3)*a(2*n-2) = (-3)^(n-1), n >= 1; a(2*n+1) = (-3)*a(2*n-1) - 2*(-1)^n*A000108(n-1). - Philippe Deléham, Feb 02 2012

a(2*n+1) = (-1)^n * A137720(n). - Vaclav Kotesovec, Jul 31 2014

EXAMPLE

G.f.: A(x) = 1 + x + x^2 - x^3 - 3*x^4 + x^5 + 9*x^6 + x^7 - 27*x^8 - ...

ILLUSTRATION OF G.F.:

A(x) = 1 + x/exp((A(-x)-1) + (A(x)-1)^2/2 + (A(-x)-1)^3/3 + (A(x)-1)^4/4 + ...)

RELATED EXPANSION:

Coefficients of 1/A(x) include central binomial coefficients:

[1, -1, 0, 2, 0, -6, 0, 20, 0, -70, 0, 252, 0, -924, ...].

From Philippe Deléham, Feb 02 2012: (Start)

a(2) = 1,

a(4) = (-3)*1 = -3,

a(6) = (-3)*(-3) = 9,

a(8) = (-3)*9 = -27,

a(10) = (-3)*(-27) = 81,

a(12) = (3)*81 = -243, etc.

a(1) = 1,

a(3) = (-3)*1 + 2*1 = -1,

a(5) = (-3)*(-1)- 2*1 = 1,

a(7) = (-3)*1 + 2*2 = 1,

a(9) = (-3)*1 - 2*5 = -13,

a(11) = (-3)*(-13) + 2*14 = 67,

a(13) = (-3)*67 - 2*42 = -285,

a(15) = (-3)*(-285) + 2*132 = 1119, etc. (End)

MAPLE

1, seq(sum(k*sum(j*2^j*(-1)^j*binomial(n, j)*binomial(2*(n-k)-j-1, n-k-1)/(n*(n-k)), j=0..n), k=1..n-1) +(-1)^(n-1), n=1..200); # Muniru A Asiru, Feb 04 2018

MATHEMATICA

CoefficientList[Series[Sqrt[1+4*x^2]/(Sqrt[1+4*x^2] -x), {x, 0, 40}], x] (* G. C. Greubel, Nov 17 2018 *)

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*exp(-sum(k=1, n, (subst(A, x, (-1)^k*x+x*O(x^n))-1)^k/k))); polcoeff(A, n)}

(Maxima) a(n):=sum((k*sum(j*2^j*(-1)^j*binomial(n, j)*binomial(2*(n-k)-j-1, n-k-1), j, 0, n))/(n*(n-k)), k, 1, n-1)+(-1)^(n-1); /* Vladimir Kruchinin, Apr 17 2011 */

(GAP) Concatenation([1], List([1..200], n->Sum([1..n-1], k->k*Sum([0..n], j->j*2^j*(-1)^j*Binomial(n, j)*Binomial(2*(n-k)-j-1, n-k-1))/(n*(n-k)))+(-1)^(n-1))); # Muniru A Asiru, Feb 04 2018

(Sage) s= (sqrt(1+4*x^2)/(sqrt(1+4*x^2) - x)).series(x, 40); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 17 2018

CROSSREFS

Cf. A000108, A000984, A156909, A137720.

Sequence in context: A090261 A303552 A130599 * A063467 A223140 A021762

Adjacent sequences: A157671 A157672 A157673 * A157675 A157676 A157677

KEYWORD

sign

AUTHOR

Paul D. Hanna, Mar 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 04:37 EST 2022. Contains 358431 sequences. (Running on oeis4.)