login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157674
G.f.: A(x) = 1 + x/exp( Sum_{k>=1} (A((-1)^k*x) - 1)^k/k ).
5
1, 1, 1, -1, -3, 1, 9, 1, -27, -13, 81, 67, -243, -285, 729, 1119, -2187, -4215, 6561, 15505, -19683, -56239, 59049, 202309, -177147, -724499, 531441, 2589521, -1594323, -9254363, 4782969, 33111969, -14348907, -118725597, 43046721
OFFSET
0,5
LINKS
FORMULA
G.f.: A(x) = sqrt(1+4*x^2)/(sqrt(1+4*x^2) - x).
a(n) = Sum(k=1..n-1, (k*Sum(j=0..n, j*2^j*(-1)^j*binomial(n,j)* binomial(2*(n-k)-j-1,n-k-1)))/(n*(n-k)))+(-1)^(n-1) n>0, a(0)=1. - Vladimir Kruchinin, Apr 17 2011
a(2*n) = (-3)*a(2*n-2) = (-3)^(n-1), n >= 1; a(2*n+1) = (-3)*a(2*n-1) - 2*(-1)^n*A000108(n-1). - Philippe Deléham, Feb 02 2012
a(2*n+1) = (-1)^n * A137720(n). - Vaclav Kotesovec, Jul 31 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 - x^3 - 3*x^4 + x^5 + 9*x^6 + x^7 - 27*x^8 - ...
ILLUSTRATION OF G.F.:
A(x) = 1 + x/exp((A(-x)-1) + (A(x)-1)^2/2 + (A(-x)-1)^3/3 + (A(x)-1)^4/4 + ...)
RELATED EXPANSION:
Coefficients of 1/A(x) include central binomial coefficients:
[1, -1, 0, 2, 0, -6, 0, 20, 0, -70, 0, 252, 0, -924, ...].
From Philippe Deléham, Feb 02 2012: (Start)
a(2) = 1,
a(4) = (-3)*1 = -3,
a(6) = (-3)*(-3) = 9,
a(8) = (-3)*9 = -27,
a(10) = (-3)*(-27) = 81,
a(12) = (3)*81 = -243, etc.
a(1) = 1,
a(3) = (-3)*1 + 2*1 = -1,
a(5) = (-3)*(-1)- 2*1 = 1,
a(7) = (-3)*1 + 2*2 = 1,
a(9) = (-3)*1 - 2*5 = -13,
a(11) = (-3)*(-13) + 2*14 = 67,
a(13) = (-3)*67 - 2*42 = -285,
a(15) = (-3)*(-285) + 2*132 = 1119, etc. (End)
MAPLE
1, seq(sum(k*sum(j*2^j*(-1)^j*binomial(n, j)*binomial(2*(n-k)-j-1, n-k-1)/(n*(n-k)), j=0..n), k=1..n-1) +(-1)^(n-1), n=1..200); # Muniru A Asiru, Feb 04 2018
MATHEMATICA
CoefficientList[Series[Sqrt[1+4*x^2]/(Sqrt[1+4*x^2] -x), {x, 0, 40}], x] (* G. C. Greubel, Nov 17 2018 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*exp(-sum(k=1, n, (subst(A, x, (-1)^k*x+x*O(x^n))-1)^k/k))); polcoeff(A, n)}
(Maxima) a(n):=sum((k*sum(j*2^j*(-1)^j*binomial(n, j)*binomial(2*(n-k)-j-1, n-k-1), j, 0, n))/(n*(n-k)), k, 1, n-1)+(-1)^(n-1); /* Vladimir Kruchinin, Apr 17 2011 */
(GAP) Concatenation([1], List([1..200], n->Sum([1..n-1], k->k*Sum([0..n], j->j*2^j*(-1)^j*Binomial(n, j)*Binomial(2*(n-k)-j-1, n-k-1))/(n*(n-k)))+(-1)^(n-1))); # Muniru A Asiru, Feb 04 2018
(Sage) s= (sqrt(1+4*x^2)/(sqrt(1+4*x^2) - x)).series(x, 40); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 17 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 05 2009
STATUS
approved