login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223140 Decimal expansion of (sqrt(29) + 1)/2. 7
3, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Decimal expansion of sqrt(7 + sqrt(7 + sqrt(7 + sqrt(7 + ... )))).
Sequence with a(1) = 2 is decimal expansion of sqrt(7 - sqrt(7 - sqrt(7 - sqrt(7 - ... )))) - A223141.
From Wolfdieter Lang, Jan 05 2024: (Start)
This number phi29 = (1 + sqrt(29))/2 is the fundamental algebraic integer in the quadratic number field Q(sqrt(29)) with minimal polynomial x^2 - x - 7. The other root is -A223141.
phi29^n = 7*A(n-1) + A(n)*phi29, where A(n) = A015442(n) with A(-1) = 1/7, for n >= 0. For negative powers n see A367454 = 1/phi29. (End)
LINKS
FORMULA
Closed form: (sqrt(29) + 1)/2 = A098318-2 = 10*A085551+3 = A223141+1.
sqrt(7 + sqrt(7 + sqrt(7 + sqrt(7 + ... )))) - 1 = sqrt(7 - sqrt(7 - sqrt(7 - sqrt(7 - ... )))). See A223141.
EXAMPLE
3.1925824035672520156253552457701...
MATHEMATICA
RealDigits[(1 + Sqrt[29])/2, 10, 130]
CROSSREFS
Essentially the same as A098318 and A085551.
Sequence in context: A157674 A360752 A063467 * A021762 A019736 A213595
KEYWORD
nonn,cons
AUTHOR
Jaroslav Krizek, Apr 02 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 16:12 EST 2024. Contains 370442 sequences. (Running on oeis4.)