login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157675
G.f.: A(x) = exp( Sum_{n>=1} A(2^n*x)^n * x^n/n ).
4
1, 1, 3, 19, 237, 5741, 270857, 25099497, 4605241487, 1681614043919, 1225216121453227, 1783355695990213771, 5188617952349909215215, 30183911091753947571225583, 351131331387346570480797774119
OFFSET
0,3
COMMENTS
Conjectured to consist entirely of integers.
Compare to: C(x) = exp( Sum_{n>=1} C(x)^n*x^n/n ) where C(x) = g.f. of Catalan numbers (A000108).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 237*x^4 + 5741*x^5 + 270857*x^6 +...
A(x) = exp(A(2x)*x + A(4x)^2*x^2/2 + A(8x)^3*x^3/3 + A(16x)^4*x^4/4 +...).
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A, x, 2^m*x +x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
Cf. A156907.
Sequence in context: A001929 A349962 A230316 * A355216 A135754 A340225
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 06 2009
STATUS
approved