login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233895
G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*(A(x)^2 + A(-x)^2).
3
1, 1, 2, 3, 10, 18, 60, 115, 410, 822, 2996, 6174, 22980, 48324, 182328, 389187, 1484410, 3205710, 12329988, 26876586, 104080812, 228606012, 890262984, 1967830254, 7699472676, 17110322908, 67215426440, 150058534620, 591517612616, 1325828841480, 5241992235888
OFFSET
0,3
LINKS
FORMULA
Recurrence: n*(n+1)*(n+2)*(81*n^6 - 756*n^5 + 2565*n^4 - 3630*n^3 + 1150*n^2 + 1998*n - 1648)*a(n) = - 6*n*(n+1)*(81*n^5 - 1026*n^4 + 4851*n^3 - 10458*n^2 + 10280*n - 3872)*a(n-1) + 12*n*(486*n^8 - 4536*n^7 + 14634*n^6 - 14085*n^5 - 23214*n^4 + 69355*n^3 - 66518*n^2 + 29510*n - 6544)*a(n-2) - 72*(81*n^7 - 297*n^6 - 2124*n^5 + 13899*n^4 - 28141*n^3 + 20794*n^2 + 540*n - 4800)*a(n-3) - 144*(n-3)*(243*n^8 - 2268*n^7 + 7182*n^6 - 5976*n^5 - 13488*n^4 + 33301*n^3 - 30472*n^2 + 20528*n - 10400)*a(n-4) - 864*(n-4)*(n-3)*(n-2)*(108*n^3 - 441*n^2 + 75*n + 200)*a(n-5) - 1728*(n-5)*(n-4)*(n-3)*(81*n^6 - 270*n^5 + 690*n^3 - 695*n^2 + 374*n - 240)*a(n-6). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ c*d^n/n^(3/2), where d = sqrt(24 - 3*I*2^(2/3)*3^(5/6)*(3 + I*sqrt(3))^(1/3) + 6*I*2^(1/3)*3^(1/6)*(3 + I*sqrt(3))^(2/3) - 3*2^(2/3)*(9 + 3*I*sqrt(3))^(1/3)) = 3.12769717670219... is the root of the equation 1728 + 432*d^2 - 72*d^4 + d^6 = 0 and c = sqrt((34 - 4*sqrt(247) * sin(arccsc(494 * sqrt(247)/7687)/3)) / Pi) = 1.281119572461999772722... if n is even, and c = 2*sqrt(6 - sqrt(129) * sin(arcsin(323*sqrt(3/43)/86)/3)) / sqrt(Pi) = 0.970593260725094233562... if n is odd. - Vaclav Kotesovec, Dec 21 2013, updated Mar 18 2024
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 18*x^5 + 60*x^6 + 115*x^7 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 30*x^4 + 68*x^5 + 205*x^6 + 482*x^7 +...
A(x)*A(-x) = 1 + 3*x^2 + 18*x^4 + 115*x^6 + 822*x^8 + 6174*x^10 +...
A(x)^2+A(-x)^2 = 2 + 10*x^2 + 60*x^4 + 410*x^6 + 2996*x^8 + 22980*x^10 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, -x)+x^2*(A^2+subst(A^2, x, -x+x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 17 2013
STATUS
approved