login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208887
G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*(A(x) + A(-x)).
5
1, 1, 2, 3, 4, 6, 8, 11, 16, 22, 32, 46, 64, 92, 128, 179, 256, 358, 512, 730, 1024, 1460, 2048, 2878, 4096, 5756, 8192, 11644, 16384, 23288, 32768, 46147, 65536, 92294, 131072, 186018, 262144, 372036, 524288, 739210, 1048576, 1478420, 2097152, 2973636
OFFSET
0,3
COMMENTS
Limit a(n)^(1/n) = sqrt(2).
LINKS
FORMULA
G.f.: A(x) = (sqrt(1+4*x^4) - (1-2*x-2*x^2))/((2*x)*(1-2*x^2)).
Recurrence: (n+1)*a(n) = 2*(n+1)*a(n-2) - 4*(n-5)*a(n-4) + 8*(n-5)*a(n-6). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ 2^(n/2) * (1 - 2*sin(Pi*n/4)*sin(Pi*n/2)/(sqrt(Pi)*n^(3/2))). - Vaclav Kotesovec, Aug 19 2013
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 +...
Related series:
A(x)*A(-x) = 1 + 3*x^2 + 6*x^4 + 11*x^6 + 22*x^8 + 46*x^10 + 92*x^12 +...
A(x)+A(-x) = 2 + 4*x^2 + 8*x^4 + 16*x^6 + 32*x^8 + 64*x^10 + 128*x^12 +...
MATHEMATICA
CoefficientList[Series[(Sqrt[1+4*x^4] - (1-2*x-2*x^2))/((2*x)*(1-2*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 19 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, -x)+x^2*(A+subst(A, x, -x+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) Vec((sqrt(1+4*x^4) - (1-2*x-2*x^2))/((2*x)*(1-2*x^2)) + O(x^50)) \\ G. C. Greubel, Feb 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 07 2012
STATUS
approved