login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208890
a(n) = A000984(n)*A004981(n), the term-wise product of the coefficients in (1-4*x)^(-1/2) and (1-8*x)^(-1/4).
0
1, 4, 60, 1200, 27300, 668304, 17153136, 455083200, 12372574500, 342766138000, 9638583800560, 274341178587840, 7887308884400400, 228685287180840000, 6678543795015960000, 196260140322869011200, 5798873833602270315300, 172160337343624495866000
OFFSET
0,2
COMMENTS
The sequences A000984 and A004981 are related by the aesthetic identity:
Sum_{n>=0} A000984(n)^3 *x^n = ( Sum_{n>=0} A004981(n)^2 *x^n )^2.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
The terms are the term-wise products of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...],
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 136, 2880, 67800, 1699008, 44368704, 1193107968, ...],
A^4: [1, 16, 336, 7936, 200176, 5266176, 142657536, 3948773376, ...],
A^8: [1, 32, 928, 26624, 767200, 22270976, 651331072, 19178651648, ...].
PROG
(PARI) {A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2), n)}
{A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4), n)}
{a(n)=A000984(n)*A004981(n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2012
STATUS
approved