login
A208891
Pascal's triangle matrix augmented with a right border of 1's.
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45
OFFSET
0,8
COMMENTS
The eigensequence of this triangle starts as 1, 2, 4, 9, 23, 65,... (cf. A007476).
The flattened sequence differs from A135225 only by an additional leading 1.
FORMULA
T(n,n)=1. T(n,k) = A007318(n-1,k) for k<n.
EXAMPLE
First few rows of the triangle =
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 1, 1;
1, 6, 15, 20, 15, 6, 1, 1;
1, 7, 21, 35, 35, 21, 7, 1, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1, 1;
1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1;
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1;
...
MAPLE
208891 := proc(n, k)
if n <0 or k<0 or k>n then
0;
elif n = k then
1 ;
else
binomial(n-1, k) ;
end if;
end proc:
seq(seq(A208891(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Jul 19 2024
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Mar 03 2012
STATUS
approved