login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007476
Shifts 2 places left under binomial transform.
(Formerly M1192)
30
1, 1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, 33825, 140581, 612933, 2795182, 13298464, 65852873, 338694479, 1805812309, 9963840219, 56807228074, 334192384460, 2026044619017, 12642938684817, 81118550133657, 534598577947465, 3615474317688778, 25070063421597484
OFFSET
0,4
COMMENTS
Starting (1, 2, 4, 9, 23, ...) = row sums of triangle A153859. - Gary W. Adamson, Jan 02 2009
Binomial transform of the sequence starting (1, 1, 2, 4, 9, ...) = first differences of (1, 2, 4, 9, 23, ...); that is, (1, 2, 5, 14, 42, 134, 455, 1642, ...). - Gary W. Adamson, May 20 2013
Row sums of triangle A256161. - Margaret A. Readdy, Mar 16 2015
RG-words corresponding to set partitions of {1, ..., n} with every even entry appearing exactly once. - Margaret A. Readdy, Mar 16 2015
a(n) is the number of partitions of [n] whose blocks can be written such that the smallest elements form an increasing sequence and the largest elements form a decreasing sequence. a(5) = 9: 12345, 1235|4, 1245|3, 125|34, 1345|2, 135|24, 145|23, 15|234, 15|24|3. - Alois P. Heinz, Apr 24 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..650 (first 101 terms from T. D. Noe)
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.
A. Claesson and T. Mansour, Permutations avoiding a pair of Babson-Steingrimsson patterns, arXiv:math/0107044 [math.CO], 2001-2010.
Rigoberto Flórez, José L. Ramírez, Fabio A. Velandia, and Diego Villamizar, Some Connections Between Restricted Dyck Paths, Polyominoes, and Non-Crossing Partitions, arXiv:2308.02059 [math.CO], 2023. See Table 1 p. 13.
N. J. A. Sloane, Transforms
FORMULA
G.f.: Sum_{k>=0} x^(2k)/(Product_{m=0..k-1} (1-mx) * Product_{m=0..k+1} (1-mx)).
G.f. A(x) satisfies A(x) = 1 + x + (x^2/(1-x))*A(x/(1-x)). - Vladimir Kruchinin, Nov 28 2011
a(n) = A000994(n) + A000995(n). - Peter Bala, Jan 27 2015
MAPLE
a:= proc(n) option remember; `if`(n<2, 1,
add(a(j)*binomial(n-2, j), j=0..n-2))
end:
seq(a(n), n=0..31); # Alois P. Heinz, Jul 29 2019
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n-2, k] a[k], {k, 0, n-2}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 08 2012, after Ralf Stephan *)
PROG
(PARI) a(n)=if(n<2, 1, sum(k=0, n-2, binomial(n-2, k)*a(k))) /* Ralf Stephan; corrected by Manuel Blum, May 22 2010 */
CROSSREFS
Row sums of A246118.
Sequence in context: A245160 A245161 A245162 * A202552 A272301 A359032
KEYWORD
nonn,eigen,nice
EXTENSIONS
Spelling correction by Jason G. Wurtzel, Aug 22 2010
STATUS
approved