OFFSET
0,4
COMMENTS
Starting (1, 2, 4, 9, 23, ...) = row sums of triangle A153859. - Gary W. Adamson, Jan 02 2009
Binomial transform of the sequence starting (1, 1, 2, 4, 9, ...) = first differences of (1, 2, 4, 9, 23, ...); that is, (1, 2, 5, 14, 42, 134, 455, 1642, ...). - Gary W. Adamson, May 20 2013
Row sums of triangle A256161. - Margaret A. Readdy, Mar 16 2015
RG-words corresponding to set partitions of {1, ..., n} with every even entry appearing exactly once. - Margaret A. Readdy, Mar 16 2015
a(n) is the number of partitions of [n] whose blocks can be written such that the smallest elements form an increasing sequence and the largest elements form a decreasing sequence. a(5) = 9: 12345, 1235|4, 1245|3, 125|34, 1345|2, 135|24, 145|23, 15|234, 15|24|3. - Alois P. Heinz, Apr 24 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..650 (first 101 terms from T. D. Noe)
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.
A. Claesson and T. Mansour, Permutations avoiding a pair of Babson-Steingrimsson patterns, arXiv:math/0107044 [math.CO], 2001-2010.
Rigoberto Flórez, José L. Ramírez, Fabio A. Velandia, and Diego Villamizar, Some Connections Between Restricted Dyck Paths, Polyominoes, and Non-Crossing Partitions, arXiv:2308.02059 [math.CO], 2023. See Table 1 p. 13.
N. J. A. Sloane, Transforms
L. Sze, OEIS conjecture 70
FORMULA
G.f.: Sum_{k>=0} x^(2k)/(Product_{m=0..k-1} (1-mx) * Product_{m=0..k+1} (1-mx)).
G.f. A(x) satisfies A(x) = 1 + x + (x^2/(1-x))*A(x/(1-x)). - Vladimir Kruchinin, Nov 28 2011
MAPLE
a:= proc(n) option remember; `if`(n<2, 1,
add(a(j)*binomial(n-2, j), j=0..n-2))
end:
seq(a(n), n=0..31); # Alois P. Heinz, Jul 29 2019
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n-2, k] a[k], {k, 0, n-2}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 08 2012, after Ralf Stephan *)
PROG
(PARI) a(n)=if(n<2, 1, sum(k=0, n-2, binomial(n-2, k)*a(k))) /* Ralf Stephan; corrected by Manuel Blum, May 22 2010 */
CROSSREFS
KEYWORD
nonn,eigen,nice
AUTHOR
EXTENSIONS
Spelling correction by Jason G. Wurtzel, Aug 22 2010
STATUS
approved