Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1192 #81 Aug 07 2023 08:04:31
%S 1,1,1,2,4,9,23,65,199,654,2296,8569,33825,140581,612933,2795182,
%T 13298464,65852873,338694479,1805812309,9963840219,56807228074,
%U 334192384460,2026044619017,12642938684817,81118550133657,534598577947465,3615474317688778,25070063421597484
%N Shifts 2 places left under binomial transform.
%C Starting (1, 2, 4, 9, 23, ...) = row sums of triangle A153859. - _Gary W. Adamson_, Jan 02 2009
%C Binomial transform of the sequence starting (1, 1, 2, 4, 9, ...) = first differences of (1, 2, 4, 9, 23, ...); that is, (1, 2, 5, 14, 42, 134, 455, 1642, ...). - _Gary W. Adamson_, May 20 2013
%C Row sums of triangle A256161. - _Margaret A. Readdy_, Mar 16 2015
%C RG-words corresponding to set partitions of {1, ..., n} with every even entry appearing exactly once. - _Margaret A. Readdy_, Mar 16 2015
%C a(n) is the number of partitions of [n] whose blocks can be written such that the smallest elements form an increasing sequence and the largest elements form a decreasing sequence. a(5) = 9: 12345, 1235|4, 1245|3, 125|34, 1345|2, 135|24, 145|23, 15|234, 15|24|3. - _Alois P. Heinz_, Apr 24 2023
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A007476/b007476.txt">Table of n, a(n) for n = 0..650</a> (first 101 terms from T. D. Noe)
%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%H Yue Cai and Margaret Readdy, <a href="http://arxiv.org/abs/1506.03249">Negative q-Stirling numbers</a>, arXiv:1506.03249 [math.CO], 2015.
%H A. Claesson and T. Mansour, <a href="http://arxiv.org/abs/math/0107044">Permutations avoiding a pair of Babson-Steingrimsson patterns</a>, arXiv:math/0107044 [math.CO], 2001-2010.
%H Rigoberto Flórez, José L. Ramírez, Fabio A. Velandia, and Diego Villamizar, <a href="https://arxiv.org/abs/2308.02059">Some Connections Between Restricted Dyck Paths, Polyominoes, and Non-Crossing Partitions</a>, arXiv:2308.02059 [math.CO], 2023. See Table 1 p. 13.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H L. Sze, <a href="https://web.archive.org/web/20050425005413/http://lsze.cosam.calpoly.edu/oeis70.pdf">OEIS conjecture 70</a>
%F G.f.: Sum_{k>=0} x^(2k)/(Product_{m=0..k-1} (1-mx) * Product_{m=0..k+1} (1-mx)).
%F G.f. A(x) satisfies A(x) = 1 + x + (x^2/(1-x))*A(x/(1-x)). - _Vladimir Kruchinin_, Nov 28 2011
%F a(n) = A000994(n) + A000995(n). - _Peter Bala_, Jan 27 2015
%p a:= proc(n) option remember; `if`(n<2, 1,
%p add(a(j)*binomial(n-2, j), j=0..n-2))
%p end:
%p seq(a(n), n=0..31); # _Alois P. Heinz_, Jul 29 2019
%t a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n-2, k] a[k], {k, 0, n-2}]; Table[a[n], {n, 0, 24}] (* _Jean-François Alcover_, Aug 08 2012, after _Ralf Stephan_ *)
%o (PARI) a(n)=if(n<2, 1, sum(k=0, n-2, binomial(n-2, k)*a(k))) /* _Ralf Stephan_; corrected by Manuel Blum, May 22 2010 */
%Y Cf. A000994, A000995, A092920, A153859.
%Y Row sums of A246118.
%K nonn,eigen,nice
%O 0,4
%A _N. J. A. Sloane_
%E Spelling correction by _Jason G. Wurtzel_, Aug 22 2010