login
A007478
Dimension of primitive Vassiliev knot invariants of order n.
(Formerly M0688)
4
1, 1, 1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55
OFFSET
0,5
COMMENTS
Next term is at least 78. - Jan Kneissler jk(AT)math.uni-bonn.de, Sep 1997
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
Joan S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287; TeX source.
D. J. Broadhurst, Conjectured enumeration of Vassiliev invariants, arXiv:q-alg/9709031, 1997.
S. Chmutov and S. Duzhin, A lower bound for the number of Vassiliev knot invariants, Topology and its Applications, Volume 92, Number 3, 14 April 1999, pp. 201-223(23).
Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12, arXiv:q-alg/9706022, 1997.
T. Ohtsuki (ed.), Problems on invariants of knots and 3-manifolds, arXiv:math/0406190 [math.GT], (2004); see Table 2 on p.407.
FORMULA
Broadhurst gives a conjectured g.f.
CROSSREFS
Sequence in context: A344002 A328170 A078408 * A014605 A365828 A232477
KEYWORD
hard,more,nonn,nice
STATUS
approved