login
A365828
Number of strict integer partitions of 2n not containing n.
7
1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 78, 108, 148, 201, 270, 359, 475, 623, 811, 1050, 1351, 1728, 2201, 2789, 3517, 4418, 5527, 6887, 8553, 10585, 13055, 16055, 19685, 24065, 29343, 35685, 43287, 52387, 63253, 76200, 91605, 109897, 131575, 157231, 187539
OFFSET
0,3
FORMULA
a(n) = A000009(2n) - A000009(n) + 1.
EXAMPLE
The a(0) = 1 through a(6) = 12 strict partitions:
() (2) (4) (6) (8) (10) (12)
(3,1) (4,2) (5,3) (6,4) (7,5)
(5,1) (6,2) (7,3) (8,4)
(7,1) (8,2) (9,3)
(5,2,1) (9,1) (10,2)
(6,3,1) (11,1)
(7,2,1) (5,4,3)
(4,3,2,1) (7,3,2)
(7,4,1)
(8,3,1)
(9,2,1)
(5,4,2,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[2n], UnsameQ@@#&&FreeQ[#, n]&]], {n, 0, 30}]
CROSSREFS
The complement is counted by A111133.
For non-strict partitions we have A182616, complement A000041.
A000009 counts strict integer partitions.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A365827 counts strict partitions not of length 2, complement A140106.
Sequence in context: A078408 A007478 A014605 * A232477 A232478 A232476
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 20 2023
STATUS
approved