login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008967 Coefficients of Gaussian polynomials q_binomial(n-2, 2). Also triangle of distribution of rank sums: Wilcoxon's statistic. Irregular triangle read by rows. 36
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,7
COMMENTS
Rows are numbers of dominoes with k spots where each half-domino has zero to n spots (in standard domino set: n=6, there are 28 dominoes and row is 1,1,2,2,3,3,4,3,3,2,2,1,1). - Henry Bottomley, Aug 23 2000
The Gaussian polynomial (or Gaussian binomial) [n,2]_q is an example of a q-binomial coefficient (see the link) and may be defined for n >= 2 by [n,2]_q = ([n]_q * [n-1]_q)/([1]_q * [2]_q), where [n]_q := q^n - 1. The first few values are: [2,2]_q = 1; [3,2]_q = 1 + q + q^2; [4,2]_q = 1 + q + 2q^2 + q^3 + q^4. - Peter Bala, Sep 23 2007
These numbers appear in the solution of Cayley's counting problem on covariants as N(p,2,w) = [x^p,q^w] Phi(q,x) with the o.g.f. Phi(q,x) = 1/((1-x)(1-qx)(1-q^2x)) given by Peter Bala in the formula section. See the Hawkins reference, p. 264, were also references are given. - Wolfdieter Lang, Nov 30 2012
The entry a(p,w), p >= 0, w = 0,1,...,2*p, of this irregular triangle is the number of nonnegative solutions of m_0 + m_1 + m_2 = p and 1*m_1 + 2*m_2 = w. See the Hawkins reference p. 264, (4.8). N(p,2,w) there is a(p,w). See also the Cayley reference p. 110, 35. with m = 2, Theta = p and q = w. - Wolfdieter Lang, Dec 01 2012
From Gus Wiseman, Sep 20 2023: (Start)
Also the number of unordered pairs of distinct positive integers up to n with sum k. For example, row n = 9 counts the following pairs:
12 13 14 15 16 17 18 19 29 39 49 59 69 79 89
23 24 25 26 27 28 38 48 58 68 78
34 35 36 37 47 57 67
45 46 56
Allowing repeated parts (x,x) gives A004737.
For strict partitions instead of just pairs we have A053632.
(End)
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 242.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 236.
T. Hawkins, Emergence of the Theory of Lie Groups, Springer 2000, ch. 7.4, p. 260-5.
LINKS
John Tyler Rascoe, Rows n = 4..103, flattened
A. Cayley, A Second Memoir Upon Quantics, Phil. Trans. R. Soc. London, 146 (1856) 101-126.
Eric Weisstein's World of Mathematics, q-Binomial Coefficient.
FORMULA
Let f(r) = Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2) / x^((r-1)*(r-2)/2); then expanding f(r) in powers of x and taking coefficients gives the successive rows of this triangle (with a different offset).
Expanding (q^n - 1)(q^(n+1) - 1)/((q - 1)(q^2 - 1)) in powers of q and taking coefficients gives the n-th row of the triangle. Ordinary generating function: 1/((1-x)(1-qx)(1-q^2x)) = 1 + x(1 + q + q^2) + x^2(1 + q + 2q^2 + q^3 + q^4) + .... - Peter Bala, Sep 23 2007
For n >= 2, let a(n,i) denote the i-th entry of the (n-1)-st row of this triangle; for every 0 <= i <= n-2, a(n,i) = a(n,2(n-2)-i) = ceiling((i+1)/2). - Christian Barrientos, Aug 08 2019
EXAMPLE
1;
1,1,1;
1,1,2,1,1;
1,1,2,2,2,1,1;
1,1,2,2,3,2,2,1,1;
1,1,2,2,3,3,3,2,2,1,1;
...
Partitions: row p=2 and column w=2 has entry 2 because the 2 solutions of the two equations mentioned in a comment above are: m_0 = 0, m_1 = 2, m_2 = 0 and m_0 = 1, m_1 = 0, m_2 = 1. - Wolfdieter Lang, Dec 01 2012
MAPLE
qBinom := proc(n, m, q)
mul((1-q^(n-i))/(1-q^(i+1)), i=0..m-1) ;
factor(%) ;
expand(%) ;
end proc:
A008967 := proc(n, k)
coeftayl( qBinom(n, 2, q), q=0, k ) ;
end proc:
seq(seq( A008967(n, k), k=0..2*n-4), n=2..10) ; # assumes offset 2. R. J. Mathar, Oct 13 2011
MATHEMATICA
rmax = 11; f[r_] := Product[(x^i - x^(r+1))/(1-x^i), {i, 1, r-2}]/ x^((r-1)*(r-2)/2); row[r_] := CoefficientList[ Series[ f[r], {x, 0, 2rmax}], x]; Flatten[ Table[ row[r], {r, 2, rmax}]] (* Jean-François Alcover, Oct 13 2011, after given formula *)
T[n_, k_] := SeriesCoefficient[QBinomial[n - 2, 2, q], {q, 0, k}];
Table[T[n, k], {n, 4, 13}, {k, 0, 2 n - 8}] // Flatten (* Jean-François Alcover, Aug 20 2019 *)
Table[Length[Select[Subsets[Range[n], {2}], Total[#]==k&]], {n, 2, 15}, {k, 3, 2n-1}] (* Gus Wiseman, Sep 20 2023 *)
PROG
(SageMath)
print(flatten([q_binomial(n-2, 2).list() for n in (4..13)])) # Peter Luschny, Oct 23 2019
CROSSREFS
A version with zeros is A219238.
This is the case of A365541 counting only length-2 subsets.
Sequence in context: A265120 A329621 A124961 * A345971 A211355 A211353
KEYWORD
tabf,nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Christian Barrientos, Aug 08 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)