login
Number of strict integer partitions of 2n not containing n.
7

%I #7 Sep 21 2023 08:56:31

%S 1,1,2,3,5,8,12,18,27,39,55,78,108,148,201,270,359,475,623,811,1050,

%T 1351,1728,2201,2789,3517,4418,5527,6887,8553,10585,13055,16055,19685,

%U 24065,29343,35685,43287,52387,63253,76200,91605,109897,131575,157231,187539

%N Number of strict integer partitions of 2n not containing n.

%F a(n) = A000009(2n) - A000009(n) + 1.

%e The a(0) = 1 through a(6) = 12 strict partitions:

%e () (2) (4) (6) (8) (10) (12)

%e (3,1) (4,2) (5,3) (6,4) (7,5)

%e (5,1) (6,2) (7,3) (8,4)

%e (7,1) (8,2) (9,3)

%e (5,2,1) (9,1) (10,2)

%e (6,3,1) (11,1)

%e (7,2,1) (5,4,3)

%e (4,3,2,1) (7,3,2)

%e (7,4,1)

%e (8,3,1)

%e (9,2,1)

%e (5,4,2,1)

%t Table[Length[Select[IntegerPartitions[2n],UnsameQ@@#&&FreeQ[#,n]&]],{n,0,30}]

%Y The complement is counted by A111133.

%Y For non-strict partitions we have A182616, complement A000041.

%Y A000009 counts strict integer partitions.

%Y A046663 counts partitions with no submultiset summing to k, strict A365663.

%Y A365827 counts strict partitions not of length 2, complement A140106.

%Y Cf. A008967, A035363, A078408, A079122, A231429, A238628, A344415, A365659.

%K nonn

%O 0,3

%A _Gus Wiseman_, Sep 20 2023