login
A014605
Partial sums of A001935; at one time this was conjectured to agree with A007478.
3
1, 1, 1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 77, 106, 144, 194, 258, 340, 445, 577, 743, 951, 1209, 1529, 1924, 2408, 3000, 3722, 4598, 5658, 6938, 8477, 10323, 12533, 15169, 18307, 22035, 26451, 31673, 37836, 45092, 53620, 63626, 75342, 89038, 105024, 123648
OFFSET
0,5
LINKS
Bar-Natan, Dror, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
Joan S. Birman, New points of view in knot theory (amstex), Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287.
Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12, arXiv:q-alg/9706022, 1997.
FORMULA
a(n) = a(n-1) + A001935(n-4), n>3. - R. J. Mathar, Mar 06 2016
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(`if`(
irem(d, 4)=0, 0, d), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n<4, 1, a(n-1)+b(n-4)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Jul 21 2018
MATHEMATICA
QP = QPochhammer; Join[{1, 0, 0, 0}, CoefficientList[QP[q^4]/QP[q]+O[q]^50, q]] // Accumulate (* Jean-François Alcover, Jul 21 2018 *)
CROSSREFS
Sequence in context: A328170 A078408 A007478 * A365828 A232477 A232478
KEYWORD
nonn
STATUS
approved