login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014605
Partial sums of A001935; at one time this was conjectured to agree with A007478.
3
1, 1, 1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 77, 106, 144, 194, 258, 340, 445, 577, 743, 951, 1209, 1529, 1924, 2408, 3000, 3722, 4598, 5658, 6938, 8477, 10323, 12533, 15169, 18307, 22035, 26451, 31673, 37836, 45092, 53620, 63626, 75342, 89038, 105024, 123648
OFFSET
0,5
LINKS
Bar-Natan, Dror, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
Joan S. Birman, New points of view in knot theory (amstex), Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287.
Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12, arXiv:q-alg/9706022, 1997.
FORMULA
a(n) = a(n-1) + A001935(n-4), n>3. - R. J. Mathar, Mar 06 2016
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(`if`(
irem(d, 4)=0, 0, d), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n<4, 1, a(n-1)+b(n-4)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Jul 21 2018
MATHEMATICA
QP = QPochhammer; Join[{1, 0, 0, 0}, CoefficientList[QP[q^4]/QP[q]+O[q]^50, q]] // Accumulate (* Jean-François Alcover, Jul 21 2018 *)
CROSSREFS
Sequence in context: A328170 A078408 A007478 * A365828 A232477 A232478
KEYWORD
nonn
STATUS
approved