login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A078408
Number of ways to partition 2n+1 into distinct positive integers.
60
1, 2, 3, 5, 8, 12, 18, 27, 38, 54, 76, 104, 142, 192, 256, 340, 448, 585, 760, 982, 1260, 1610, 2048, 2590, 3264, 4097, 5120, 6378, 7917, 9792, 12076, 14848, 18200, 22250, 27130, 32992, 40026, 48446, 58499, 70488, 84756, 101698, 121792, 145578, 173682
OFFSET
0,2
COMMENTS
a(n) is also the number of partitions of 2n+1 in which all parts are odd, due to Euler's partition theorem. See A000009. - Wolfdieter Lang, Jul 08 2012
REFERENCES
G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Reinhard Zumkeller)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = t(2*n+1, 0), t as defined in A079211.
Euler transform of period 16 sequence [ 2, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 2, 0, ...]. - Michael Somos, Mar 04 2003
a(n) = A000009(2*n+1). G.f. of A000009: 1/[(1 - x)*(1 - x^3)*(1 - x^5)*...] - Jon Perry, May 27 2004
Expansion of f(x, x^7) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015
From Peter Bala, Feb 04 2021: (Start)
G.f.: Sum_{n >= 0} x^n/Product_{k = 1..2*n+1} 1 - x^k. Replace q with q^2 and set t = q in Andrews, equation 2.2.5, p. 19, and then take the odd part of the series.
G.f.: 1/(1 - x)*Sum_{n >= 0} x^floor(3*n/2)/Product_{k = 1..n} (1 - x^k). (End)
a(n) = A282893(n+1) + A238478(n+1) = A035294(n+1) - A238479(n+1). - Mathew Englander, May 24 2023
G.f.: Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-1))*(1 + q^(8*n-7))/(1 - q^n). - Peter Bala, Dec 30 2024
EXAMPLE
a(3) = 5 because 7 = 1+6 = 2+5 = 3+4 = 1+2+4 (partitions into distinct parts) and 7 = 1+1+5 = 1+3+3 = 1+1+1+1+3 = 1+1+1+1+1+1+1 (partitions into odd parts). [Wolfdieter Lang, Jul 08 2012]
G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 18*x^6 + 27*x^7 + 38*x^8 + ...
G.f. = q^25 + 2*q^73 + 3*q^121 + 5*q^169 + 8*q^217 + 12*q^265 + 18*q^313 + ...
MAPLE
G := 1/(1 - x)*add(x^floor(3*n/2)/mul(1 - x^k, k = 1..n), n = 0..50):
S := series(G, x, 76):
seq(coeff(S, x, j), j = 0..75); # Peter Bala, Feb 04 2021
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x], {x, 0, 2 n + 1}]; (* Michael Somos, Oct 06 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};
(Haskell)
import Data.MemoCombinators (memo2, integral)
a078408 n = a078408_list !! n
a078408_list = f 1 where
f x = (p' 1 x) : f (x + 2)
p' = memo2 integral integral p
p _ 0 = 1
p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
-- Reinhard Zumkeller, Nov 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2002
EXTENSIONS
More terms from Reinhard Zumkeller, Dec 28 2002
STATUS
approved