OFFSET
0,2
COMMENTS
a(n) is also the number of partitions of 2n+1 in which all parts are odd, due to Euler's partition theorem. See A000009. - Wolfdieter Lang, Jul 08 2012
REFERENCES
G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Reinhard Zumkeller)
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = t(2*n+1, 0), t as defined in A079211.
Euler transform of period 16 sequence [ 2, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 2, 0, ...]. - Michael Somos, Mar 04 2003
Expansion of f(x, x^7) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015
From Peter Bala, Feb 04 2021: (Start)
G.f.: Sum_{n >= 0} x^n/Product_{k = 1..2*n+1} 1 - x^k. Replace q with q^2 and set t = q in Andrews, equation 2.2.5, p. 19, and then take the odd part of the series.
G.f.: 1/(1 - x)*Sum_{n>=0} x^floor(3*n/2)/Product_{k=1..n} (1 - x^k). (End)
EXAMPLE
a(3) = 5 because 7 = 1+6 = 2+5 = 3+4 = 1+2+4 (partitions into distinct parts) and 7 = 1+1+5 = 1+3+3 = 1+1+1+1+3 = 1+1+1+1+1+1+1 (partitions into odd parts). [Wolfdieter Lang, Jul 08 2012]
G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 18*x^6 + 27*x^7 + 38*x^8 + ...
G.f. = q^25 + 2*q^73 + 3*q^121 + 5*q^169 + 8*q^217 + 12*q^265 + 18*q^313 + ...
MAPLE
G := 1/(1 - x)*add(x^floor(3*n/2)/mul(1 - x^k, k = 1..n), n = 0..50):
S := series(G, x, 76):
seq(coeff(S, x, j), j = 0..75); # Peter Bala, Feb 04 2021
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x], {x, 0, 2 n + 1}]; (* Michael Somos, Oct 06 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};
(Haskell)
import Data.MemoCombinators (memo2, integral)
a078408 n = a078408_list !! n
a078408_list = f 1 where
f x = (p' 1 x) : f (x + 2)
p' = memo2 integral integral p
p _ 0 = 1
p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
-- Reinhard Zumkeller, Nov 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2002
EXTENSIONS
More terms from Reinhard Zumkeller, Dec 28 2002
STATUS
approved