OFFSET
0,3
COMMENTS
Also, number of partitions of 2n into odd numbers. - Vladeta Jovovic, Aug 17 2004
This sequence was originally defined as the expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ). The present definition is due to Reinhard Zumkeller. Michael Somos points out that the equivalence of the two definitions follows from Andrews, page 19.
Also, number of partitions of 2n with max descent 1 and last part 1. - Wouter Meeussen, Mar 31 2013
REFERENCES
G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
N. J. A. Sloane, Transforms
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = A000009(2*n). - Michael Somos, Mar 03 2003
Expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ).
a(n) = T(2*n, 0), T as defined in A026835.
G.f.: Product((1 + x^(8 * i + 1)) * (1 + x^(8 * i + 2))^2 * (1 + x^(8 * i + 3))^2 * (1 + x^(8 * i + 4))^3 * (1 + x^(8 * i + 5))^2 * (1 + x^(8 * i + 6))^2 * (1 + x^(8 * i + 7)) * (1 + x^(8 * i + 8))^3, i=0..infinity). - Vladeta Jovovic, Oct 10 2004
G.f.: (Sum_{k>=0} x^A074378(k)) / (Product_{k>0} (1 - x^k)) = f( x^3, x^5) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 01 2005
Euler transform of period 16 sequence [1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, ...]. - Michael Somos, Dec 17 2002
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
G.f.: 1/(1 - x)*Sum_{n>=0} x^floor((3*n+1)/2)/Product_{k=1..n} (1 - x^k). - Peter Bala, Feb 04 2021
EXAMPLE
a(4)=6 [8=7+1=6+2=5+3=5+2+1=4+3+1=2*4].
G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 22*x^7 + 46*x^9 + ...
G.f. = q + q^49 + 2*q^97 + 4*q^145 + 6*q^193 + 10*q^241 + 15*q^289 + ...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(2*n, 2*n-1):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 11 2015
MATHEMATICA
Table[Count[IntegerPartitions[2 n], q_ /; Union[q] == Sort[q]], {n, 16}];
Table[Count[IntegerPartitions[2 n], q_ /; Count[q, _?EvenQ] == 0], {n, 16}];
Table[Count[IntegerPartitions[2 n], q_ /; Last[q] == 1 && Max[q - PadRight[Rest[q], Length[q]]] <= 1 ], {n, 16}];
(* Wouter Meeussen, Mar 31 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] /QPochhammer[ x], {x, 0, 2 n}]; (* Michael Somos, May 06 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 06 2015 *)
nmax=60; CoefficientList[Series[Product[(1+x^(8*k+1)) * (1+x^(8*k+2))^2 * (1+x^(8*k+3))^2 * (1+x^(8*k+4))^3 * (1+x^(8*k+5))^2 * (1+x^(8*k+6))^2 * (1+x^(8*k+7)) * (1+x^(8*k+8))^3, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2015 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2n, 2n-1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))}; /* Michael Somos, Nov 01 2005 */
(Haskell)
import Data.MemoCombinators (memo2, integral)
a035294 n = a035294_list !! n
a035294_list = f 1 where
f x = (p' 1 (x - 1)) : f (x + 2)
p' = memo2 integral integral p
p _ 0 = 1
p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
-- Reinhard Zumkeller, Nov 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved