|
|
A074378
|
|
Even triangular numbers halved.
|
|
32
|
|
|
0, 3, 5, 14, 18, 33, 39, 60, 68, 95, 105, 138, 150, 189, 203, 248, 264, 315, 333, 390, 410, 473, 495, 564, 588, 663, 689, 770, 798, 885, 915, 1008, 1040, 1139, 1173, 1278, 1314, 1425, 1463, 1580, 1620, 1743, 1785, 1914, 1958, 2093, 2139, 2280, 2328, 2475
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Set of integers k such that k + (1 + 2 + 3 + 4 + ... + x) = 3*k, where x is sufficiently large. For example, 203 is a term because 203 + (1 + 2 + 3 + 4 + ... +28) = 609 and 609 = 3*203. - Gil Broussard, Sep 01 2008
Set of all m such that 16*m+1 is a perfect square. - Gary Detlefs, Feb 21 2010
Numbers of the form h*(4*h + 1) for h = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Numbers whose distance to nearest square equals their distance to nearest oblong; that is, numbers k such that A053188(k) = A053615(k). - Lamine Ngom, Oct 27 2020
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=0} q^a(n) = (Prod_{n>0} (1-q^n))*(Sum_{n>=0} A035294(n)*q^n).
a(n) = n*(n + 1)/4 where n*(n + 1)/2 is even.
G.f.: x*(3 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)^2).
a(n) = (2*n + 1)*floor((n + 1)/2).
a(2*k) = k*(4*k+1); a(2*k+1) = (k+1)*(4*k+3). (End)
a(n) = (4*n + 1 - (-1)^n)*(4*n + 3 - (-1)^n)/4^2. - Peter Bala, Jan 21 2019
a(n) = (2*n+1)*(n+1)*(1+(-1)^(n+1))/4 + (2*n+1)*(n)*(1+(-1)^n)/4. - Eric Simon Jacob, Jan 16 2020
Sum_{n>=1} 1/a(n) = 4 - Pi (A153799).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(2) - 4 (See A016687). (End)
|
|
MAPLE
|
a:=n->(2*n+1)*floor((n+1)/2): seq(a(n), n=0..50); # Muniru A Asiru, Feb 01 2019
|
|
MATHEMATICA
|
1/2 * Select[PolygonalNumber@ Range[0, 100], EvenQ] (* Michael De Vlieger, Jun 01 2017, Version 10.4 *)
|
|
PROG
|
(PARI) a(n)=(2*n+1)*(n-n\2)
(Magma) f:=func<i | i*(4*i+1)>; [0] cat [f(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
|
|
CROSSREFS
|
Cf. A266883 (numbers n such that 16*n-15 is a square).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|