OFFSET
0,6
REFERENCES
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
FORMULA
a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m<i<j<phi(n) & i+j=n).
MAPLE
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i-1))))
end:
a:= n-> b(n, phi(n)):
seq(a(n), n=0..100); # Alois P. Heinz, May 11 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[n, EulerPhi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
PROG
(Haskell)
a079124 n = p [1 .. a000010 n] n where
p _ 0 = 1
p [] _ = 0
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Jul 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 27 2002
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 11 2015
STATUS
approved