The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242071 Decimal expansion of 'beta', a constant appearing in the random links Traveling Salesman Problem. 0
 2, 0, 4, 1, 5, 4, 8, 1, 8, 6, 4, 1, 2, 1, 3, 2, 4, 1, 8, 0, 4, 5, 4, 9, 0, 1, 5, 8, 3, 8, 1, 4, 5, 5, 8, 6, 6, 3, 4, 0, 2, 5, 0, 2, 5, 2, 5, 6, 4, 6, 9, 1, 9, 1, 5, 5, 1, 2, 1, 3, 1, 2, 8, 1, 0, 5, 3, 6, 2, 1, 0, 6, 3, 7, 6, 7, 0, 0, 1, 2, 0, 9, 7, 1, 1, 0, 5, 5, 6, 4, 3, 9, 7, 6, 4, 3, 2, 8, 6, 9, 5, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.5 Traveling Salesman constants, p. 499. LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 60. FORMULA beta = integral_{x>0} y(x) dx, where y(x) = -2 - W_(-1) (e^(-2-x) *(2-2*e^x+x)), W_k(z) being the k-th order Lambert W function (also known as ProductLog).  y(x) is implicitly defined by the equation (1+x/2)*exp(-x)+(1+y(x)/2)*exp(-y(x)) = 1. EXAMPLE 2.041548186412132418045490158381455866340250252564691915512131281... MATHEMATICA y[x_] := -2 - ProductLog[-1, E^(-2-x)*(2 - 2*E^x + x)]; beta = (1/2)*NIntegrate[y[x], {x, 0, Infinity}, WorkingPrecision -> 102]; beta // RealDigits // First CROSSREFS Cf. A073008, A091505, A240717. Sequence in context: A327883 A007432 A079124 * A176910 A243981 A338824 Adjacent sequences:  A242068 A242069 A242070 * A242072 A242073 A242074 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Aug 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 20:47 EST 2022. Contains 350515 sequences. (Running on oeis4.)