login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242074
Numbers n such that n^2 - 1 is the product of four distinct Fibonacci numbers greater than 1.
1
25, 41, 64, 103, 131, 169, 271, 274, 281, 441, 713, 901, 1156, 1871, 3025, 4894, 7921, 12817, 20736, 21319, 33551, 54289, 87842, 142129, 229969, 372100, 602071, 974169, 1576238, 2550409, 4126649, 6677056, 10803703, 17480761, 28284466, 45765225, 74049689
OFFSET
1,1
COMMENTS
The sequence contains the squares of the Fibonacci numbers (A007598(n) for n >=5).
Proof:
Let F(m) be the m-th Fibonacci number. If n = F(m)^2, n^2 - 1 = F(m)^4-1.
For m > 1, F(m)^4 - 1 = F(m-2)*F(m-1)*F(m+1)*F(m+2) with the property F(m-2) + F(m-1) + F(m+1) + F(m+2) = F(m) + F(m+3) = 2*F(m+2). (See A244855.)
F(m)^2 - 1 = F(m-1)*F(m+1) if m odd, and F(m)^2 - 1 = F(m-2)*F(m+2)if m even;
F(m)^2 + 1 = F(m-2)*F(m+2) if m odd, and F(m)^2 + 1 = F(m-1)*F(m+1) if m even, hence the product (F(m)^2 - 1)*(F(m)^2 + 1) = F(m-2)*F(m-1)*F(m+1)*F(m+2).
The primes of the sequence are 41, 103, 131, 271, 281, 1871, 21319, ...
The composites (nonsquares) of the sequence are 274, 713, 901, 4894, 12817, 33551, 87842, ...
EXAMPLE
25^2 - 1 = 2*3*8*13 = F(5 - 2)*F(5 - 1)*F(5 + 1)*F(5 + 2) where F(5) = 5;
41^2 - 1 = 2*5*8*21;
64^2 - 1 = 3*5*13*21 = F(6 - 2)*F(6 - 1)*F(6 + 1)*F(6 + 2) where F(6) = 8;
103^2 - 1 = 3*8*13*34;
131^2 - 1 = 3*8*13*55;
169^2 - 1 = 5*8*21*34 = F(7 - 2)*F(7 - 1)*F(7 + 1)*F(7 + 2) where F(7) = 13;
271^2 - 1 = 3*5*34*144;
274^2 - 1 = 5*13*21*55;
281^2 - 1 = 2*5*8*987;
441^2 - 1 = 8*13*34*55 = F(8 - 2)*F(8 - 1)*F(8 + 1)*F(8 + 2) where F(8) = 21.
MAPLE
with(combinat, fibonacci):with(numtheory):nn:=100:lst:={}:T:=array(1..nn):
for n from 1 to nn do:
T[n]:=fibonacci(n):
od:
for p from 1 to nn-1 do:
for q from p+1 to nn-1 do:
for r from q+1 to nn-1 do:
for s from r+1 to nn-1 do:
f:=T[p]*T[q]*T[r]*T[s]+1:x:=sqrt(f):
if x=floor(x)and T[p]<>1
then
lst:=lst union {x}:
else
fi:
od:
od:
od:
od:
print(lst):
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 14 2014
STATUS
approved