login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097451
Number of partitions of n into parts congruent to {2, 3, 4} mod 6.
9
1, 0, 1, 1, 2, 1, 3, 2, 5, 4, 7, 6, 11, 9, 15, 14, 22, 20, 31, 29, 43, 41, 58, 57, 80, 78, 106, 107, 142, 143, 188, 191, 247, 253, 321, 332, 418, 432, 537, 561, 690, 721, 880, 924, 1118, 1178, 1412, 1493, 1781, 1884, 2231, 2370, 2789, 2965, 3472, 3698, 4309, 4596
OFFSET
0,5
COMMENTS
Number of partitions of n in which no part is 1, no part appears more than twice and no two parts differ by 1. Example: a(6)=3 because we have [6],[4,2] and [3,3]. - Emeric Deutsch, Feb 16 2006
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, Exercise 7.9.
LINKS
FORMULA
Euler transform of period 6 sequence [ 0, 1, 1, 1, 0, 0, ...].
G.f.: 1/Product_{j>=0} ((1-x^(2+6j))(1-x^(3+6j))(1-x^(4+6j))). - Emeric Deutsch, Feb 16 2006
Expansion of psi(x^3) / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 24 2013
Expansion of q^(-7/24) * eta(q^6)^2 / (eta(q^2) * eta(q^3) in powers of q. - Michael Somos, Sep 24 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
Expansion of f(-x, -x^5) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015
EXAMPLE
a(8)=5 because we have [8],[44],[422],[332] and [2222].
G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 4*x^9 + ...
G.f. = q^7 + q^55 + q^79 + 2*q^103 + q^127 + 3*q^151 + 2*q^175 + 5*q^199 + ...
MAPLE
g:=1/product((1-x^(2+6*j))*(1-x^(3+6*j))*(1-x^(4+6*j)), j=0..15): gser:=series(g, x=0, 75): seq(coeff(gser, x, n), n=0..67); # Emeric Deutsch, Feb 16 2006
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - Boole[ OddQ[ Quotient[ k + 1, 3]]] x^k, {k, n}], {x, 0, n}; (* Michael Somos, Sep 24 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^3] QPochhammer[ x^6] / QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Sep 24 2013 *)
PROG
(Haskell)
a097451 n = p a047228_list n where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 16 2012
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - ( (k+1)\3 % 2) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Sep 24 2013 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 24 2013 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 23 2004
EXTENSIONS
More terms from Emeric Deutsch, Feb 16 2006
STATUS
approved