login
A238782
Number of palindromic partitions of n whose least part has multiplicity 2.
4
0, 1, 0, 2, 1, 3, 2, 5, 3, 9, 5, 11, 9, 18, 12, 25, 18, 35, 26, 48, 36, 67, 50, 87, 69, 119, 91, 157, 123, 206, 162, 266, 213, 349, 277, 443, 360, 572, 460, 725, 590, 919, 750, 1156, 950, 1456, 1195, 1812, 1502, 2263, 1872, 2802, 2334, 3468, 2892, 4267, 3574
OFFSET
1,4
COMMENTS
Palindromic partitions are defined at A025065.
EXAMPLE
a(8) counts these partitions (written as palindromes): 161, 44, 422, 1331, 12221.
MATHEMATICA
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &]
Table[p[n, 1], {n, 1, 12}]
t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *)
Table[p[n, 2], {n, 1, 12}]
t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *)
Table[p[n, 3], {n, 1, 12}]
t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *)
Table[p[n, 4], {n, 1, 12}]
t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 05 2014
STATUS
approved