login
A238783
Number of palindromic partitions of n whose least part has multiplicity 3.
4
0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 2, 2, 2, 1, 5, 1, 5, 3, 8, 2, 10, 4, 13, 6, 16, 6, 25, 7, 28, 11, 38, 13, 48, 16, 61, 22, 75, 25, 100, 30, 119, 41, 153, 47, 186, 59, 234, 73, 283, 87, 356, 106, 426, 132, 528, 154, 639, 186, 781, 227, 935, 271, 1143, 322, 1362
OFFSET
1,9
COMMENTS
Palindromic partitions are defined at A025065.
EXAMPLE
a(9) counts these partitions (written as palindromes): 333, 31113.
MATHEMATICA
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &]
Table[p[n, 1], {n, 1, 12}]
t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *)
Table[p[n, 2], {n, 1, 12}]
t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *)
Table[p[n, 3], {n, 1, 12}]
t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *)
Table[p[n, 4], {n, 1, 12}]
t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 05 2014
STATUS
approved