login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123231
Row sums of A123230.
4
1, 2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025, 196418
OFFSET
1,2
COMMENTS
All terms are Fibonacci numbers A000045: a(2n-1) = Fibonacci(n), a(2n) = Fibonacci(n+2), a(2n-1) = a(2n+2). - Alexander Adamchuk, Oct 08 2006
FORMULA
From Alexander Adamchuk, Oct 08 2006: (Start)
a(n) = Fibonacci(A028242(n+2)).
a(n) = Fibonacci(A030451(n+1)).
a(n) = Fibonacci(3/4 -(-1)^(n+1)*3/4 +(n+1)/2). (End)
a(n) = A053602(n+1) = A097594(n-5). - R. J. Mathar, Mar 08 2011
G.f. -x*(1+2*x+x^3) / ( -1+x^2+x^4 ). - R. J. Mathar, Mar 08 2011
a(n) = a(n-2) + a(n-4). - Muniru A Asiru, Oct 12 2018
MAPLE
seq(coeff(series(-x*(1+2*x+x^3)/(x^4+x^2-1), x, n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 12 2018
MATHEMATICA
p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = x*p[k - 1, x] + (-1)^(n + 1)p[k - 2, x]; Table[Sum[CoefficientList[p[n, x], x][[m]], {m, 1, n + 1}], {n, 0, 20}]
Rest[Flatten[Reverse/@Partition[Fibonacci[Range[30]], 2, 1]]] (* Harvey P. Dale, Mar 19 2013 *)
PROG
(PARI) vector(50, n, fibonacci(3/4 -(-1)^(n+1)*3/4 +(n+1)/2)) \\ G. C. Greubel, Oct 12 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 + 2*x + x^3)/(1 - x^2 - x^4))); // G. C. Greubel, Oct 12 2018
(GAP) a:=[1, 2, 1, 3];; for n in [5..50] do a[n]:=a[n-2]+a[n-4]; od; a; # Muniru A Asiru, Oct 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Oct 06 2006
EXTENSIONS
More terms from Alexander Adamchuk, Oct 08 2006
STATUS
approved