login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053602 a(n) = a(n-1) - (-1)^n*a(n-2), a(0)=0, a(1)=1. 14
0, 1, 1, 2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

If b(0)=0, b(1)=1 and b(n) = b(n-1) + (-1)^n*b(n-2), then a(n) = b(n+3). - Jaume Oliver Lafont, Oct 03 2009

a(n) is the number of palindromic compositions of n-1 into parts of 1 and 2. a(7) = 5 because we have 2+2+2, 2+1+1+2, 1+2+2+1, 1+1+2+1+1, 1+1+1+1+1+1. - Geoffrey Critzer, Mar 17 2014

a(n) is the number of palindromic compositions of n into odd parts (the corresponding generating function follows easily from Theorem 1.2 of the Hoggatt et al. reference). Example: a(7) = 5 because we have 7, 1+5+1, 3+1+3, 1+1+3+1+1, 1+1+1+1+1+1+1. - Emeric Deutsch, Aug 16 2016

The ratio of a(n)/a(n-1) oscillates between phi-1 and phi+1 as n tends to infinity, where phi is golden ratio (A001622). - Waldemar Puszkarz, Oct 10 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239. - Ron Knott, Oct 29 2010

A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.

V. E. Hoggatt, Jr., and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.

M. A. Nyblom, Counting Palindromic Binary Strings Without r-Runs of Ones, J. Int. Seq. 16 (2013) #13.8.7

Index entries for two-way infinite sequences

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1)

FORMULA

G.f.: x*(1 + x + x^2)/(1 - x^2 - x^4).

a(n) = a(n-2) + a(n-4).

a(2n) = F(n), a(2n-1) = F(n+1) where F() is Fibonacci sequence.

a(3)=1, a(4)=2, a(n+2) = a(n+1) + sign(a(n) - a(n+1))*a(n), n > 4. - Benoit Cloitre, Apr 08 2002

a(n) = A079977(n-1) + A079977(n-2) + A079977(n-3), n > 2. - Ralf Stephan, Apr 26 2003

a(0) = 0, a(1) = 1; a(2n) = a(2n-1) - a(2n-2); a(2n+1) = a(2n) + a(2n-1). - Amarnath Murthy, Jul 21 2005

MAPLE

a[0] := 0: a[1] := 1: for n from 2 to 60 do a[n] := a[n-1]-(-1)^n*a[n-2] end do: seq(a[n], n = 0 .. 50); # Emeric Deutsch, Oct 09 2017

MATHEMATICA

nn=50; CoefficientList[Series[x (1+x+x^2)/(1-x^2-x^4), {x, 0, nn}], x] (* Geoffrey Critzer, Mar 17 2014 *)

LinearRecurrence[{0, 1, 0, 1}, {0, 1, 1, 2}, 60] (* Harvey P. Dale, Nov 07 2016 *)

RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]-(-1)^n a[n-2]}, a, {n, 50}] (* Vincenzo Librandi, Oct 10 2017 *)

a={0, 1}; Do[AppendTo[a, a[[-1]]-(-1)^(Length[a])a[[-2]]], {49}]; a (* Waldemar Puszkarz, Oct 10 2017 *)

PROG

(PARI) a(n)=fibonacci(n\2+n%2*2)

(MAGMA) I:=[0, 1, 1, 2]; [n le 4 select I[n] else Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi Oct 10 2017

CROSSREFS

a(3-n) = A051792(n). Cf. A000045.

Sequence in context: A262090 A239881 A051792 * A272912 A123231 A246995

Adjacent sequences:  A053599 A053600 A053601 * A053603 A053604 A053605

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Jan 17 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 05:11 EDT 2021. Contains 346340 sequences. (Running on oeis4.)