OFFSET
0,5
COMMENTS
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: ( Sum_{k>=1} x^(k*(k+1)/2) )^2. - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c(n) = A010054(n). - Wesley Ivan Hurt, Jan 06 2024
MATHEMATICA
nmax = 100; m0 = 10; A053603 := Table[a[n], {n, 0, nmax}]; Clear[counts]; counts[m_] := counts[m] = (Clear[a]; a[_] = 0; Do[k = i*(i+1)/2 + j*(j+1)/2; a[k] = a[k]+1, {i, 1, m}, {j, 1, m}]; A053603); counts[m = m0]; counts[m = 2*m]; While[ counts[m] != counts[m/2], m = 2*m]; A053603 (* Jean-François Alcover, Sep 05 2013 *)
PROG
(Haskell)
a053603 n = sum $ map (a010054 . (n -)) $
takeWhile (< n) $ tail a000217_list
-- Reinhard Zumkeller, Jun 27 2013
(PARI)
istriang(n)={n>0 && issquare(8*n+1); }
a(n) = { my(t=1, ct=0, j=1); while (t<n, ct+=istriang(n-t); j+=1; t+=j; ); ct; }
\\ Joerg Arndt, Sep 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 20 2000
STATUS
approved