login
A053603
Number of ways to write n as an ordered sum of two nonzero triangular numbers.
14
0, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 2, 1, 2, 0, 0, 4, 0, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 4, 0, 0, 0, 2, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 0, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2
OFFSET
0,5
COMMENTS
a(A051611(n)) = 0; A051533(a(n)) > 0. - Reinhard Zumkeller, Jun 27 2013
LINKS
FORMULA
G.f.: ( Sum_{k>=1} x^(k*(k+1)/2) )^2. - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c(n) = A010054(n). - Wesley Ivan Hurt, Jan 06 2024
MATHEMATICA
nmax = 100; m0 = 10; A053603 := Table[a[n], {n, 0, nmax}]; Clear[counts]; counts[m_] := counts[m] = (Clear[a]; a[_] = 0; Do[k = i*(i+1)/2 + j*(j+1)/2; a[k] = a[k]+1, {i, 1, m}, {j, 1, m}]; A053603); counts[m = m0]; counts[m = 2*m]; While[ counts[m] != counts[m/2], m = 2*m]; A053603 (* Jean-François Alcover, Sep 05 2013 *)
PROG
(Haskell)
a053603 n = sum $ map (a010054 . (n -)) $
takeWhile (< n) $ tail a000217_list
-- Reinhard Zumkeller, Jun 27 2013
(PARI)
istriang(n)={n>0 && issquare(8*n+1); }
a(n) = { my(t=1, ct=0, j=1); while (t<n, ct+=istriang(n-t); j+=1; t+=j; ); ct; }
\\ Joerg Arndt, Sep 05 2013
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 20 2000
STATUS
approved