login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write n as an ordered sum of two nonzero triangular numbers.
14

%I #19 Jan 06 2024 01:08:54

%S 0,0,1,0,2,0,1,2,0,2,0,2,1,2,0,0,4,0,2,0,1,2,2,0,2,2,0,2,0,2,1,4,0,0,

%T 2,0,2,2,2,2,0,0,3,2,0,0,4,0,2,2,0,4,0,0,0,2,3,2,2,0,2,2,0,0,2,2,2,2,

%U 0,2,2,0,3,2,0,0,4,0,0,2,0,6,0,2,2,0,0,2,2,0,1,2,2

%N Number of ways to write n as an ordered sum of two nonzero triangular numbers.

%C a(A051611(n)) = 0; A051533(a(n)) > 0. - _Reinhard Zumkeller_, Jun 27 2013

%H Reinhard Zumkeller, <a href="/A053603/b053603.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: ( Sum_{k>=1} x^(k*(k+1)/2) )^2. - _Ilya Gutkovskiy_, Dec 24 2016

%F a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c(n) = A010054(n). - _Wesley Ivan Hurt_, Jan 06 2024

%t nmax = 100; m0 = 10; A053603 := Table[a[n], {n, 0, nmax}]; Clear[counts]; counts[m_] := counts[m] = (Clear[a]; a[_] = 0; Do[k = i*(i+1)/2 + j*(j+1)/2; a[k] = a[k]+1, {i, 1, m}, {j, 1, m}]; A053603); counts[m = m0]; counts[m = 2*m]; While[ counts[m] != counts[m/2], m = 2*m]; A053603 (* _Jean-François Alcover_, Sep 05 2013 *)

%o (Haskell)

%o a053603 n = sum $ map (a010054 . (n -)) $

%o takeWhile (< n) $ tail a000217_list

%o -- _Reinhard Zumkeller_, Jun 27 2013

%o (PARI)

%o istriang(n)={n>0 && issquare(8*n+1);}

%o a(n) = { my(t=1, ct=0, j=1); while (t<n, ct+=istriang(n-t); j+=1; t+=j;); ct; }

%o \\ _Joerg Arndt_, Sep 05 2013

%Y Cf. A000217, A007294, A051611, A051533, A052343-A052348, A053604.

%Y Cf. A010054.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Jan 20 2000