login
A371222
Product of digits of (n written in base 3) mod 3.
1
0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,3
COMMENTS
a(A032924(n)) = 1 or 2. For n >= 1, a(A032924(n)) - 1 = A309953(A032924(n)) mod 3 - 1 = A010059(n+1).
FORMULA
a(n) = A309953(n) mod 3.
a(A081605(n)) = 0.
EXAMPLE
n = 5: 5_10 = 12_3 thus a(5) = 1*2 mod 3 = 2.
n = 8: 8_10 = 22_3 thus a(8) = 2*2 mod 3 = 1.
MATHEMATICA
a[n_] := Mod[Times @@ IntegerDigits[n, 3], 3]; Array[a, 100, 0] (* Amiram Eldar, Mar 18 2024 *)
PROG
(Python)
from functools import reduce
from sympy.ntheory import digits
def A371222(n): return reduce(lambda a, b: a*b%3, digits(n, 3)[1:], 1) # Chai Wah Wu, Mar 19 2024
CROSSREFS
Sequence in context: A331534 A035445 A053603 * A085794 A336939 A239002
KEYWORD
nonn,base
AUTHOR
Ctibor O. Zizka, Mar 18 2024
STATUS
approved