|
|
A032924
|
|
Numbers whose ternary expansion contains no 0.
|
|
41
|
|
|
1, 2, 4, 5, 7, 8, 13, 14, 16, 17, 22, 23, 25, 26, 40, 41, 43, 44, 49, 50, 52, 53, 67, 68, 70, 71, 76, 77, 79, 80, 121, 122, 124, 125, 130, 131, 133, 134, 148, 149, 151, 152, 157, 158, 160, 161, 202, 203, 205, 206, 211, 212, 214, 215, 229, 230, 232, 233, 238, 239
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The first 28 terms are the range of A059852 (Morse codes for letters, when written in base 3) union {44, 50} (which correspond to Morse codes of Ü and Ä). Subsequent terms represent the Morse code of other symbols in the same coding. - M. F. Hasler, Jun 22 2020
|
|
LINKS
|
|
|
FORMULA
|
a(1)=1, a(n+1) = f(a(n)+1,f(a(n)+1) where f(x,y) = if x<3 and x<>0 then y, else if x mod 3 = 0 then f(y+1,y+1), else f(floor(x/3),y). - Reinhard Zumkeller, Mar 02 2008
a(2*n) = a(2*n-1)+1, n>0. - Zak Seidov, Jul 27 2009
G.f.: x/(1-x)^2 + Sum_{m >= 1} 3^(m-1)*x^(2^(m+1)-1)/((1-x^(2^m))*(1-x))). - Robert Israel, Aug 04 2015
|
|
MAPLE
|
f:= proc(n) local L, i, m;
L:= convert(n, base, 2);
m:= nops(L);
add((1+L[i])*3^(i-1), i=1..m-1);
end proc:
|
|
MATHEMATICA
|
Flatten[Table[FromDigits[#, 3]&/@Tuples[{1, 2}, n], {n, 5}]] (* Harvey P. Dale, May 28 2016 *)
|
|
PROG
|
(Haskell)
a032924 n = a032924_list !! (n-1)
a032924_list = iterate f 1 where
f x = 1 + if r < 2 then x else 3 * f x' where (x', r) = divMod x 3
(PARI) apply( {A032924(n)=if(n<3, n, 3*self()((n-1)\2)+2-n%2)}, [1..99]) \\ M. F. Hasler, Jun 22 2020
(PARI) a(n) = fromdigits(apply(d->d+1, binary(n+1)[^1]), 3); \\ Kevin Ryde, Jun 23 2020
(Python)
def a(n): return sum(3**i*(int(b)+1) for i, b in enumerate(bin(n+1)[:2:-1]))
(Python)
while n > 2:
n, r = divmod(n, 3)
if r==0: return False
return n > 0
(Python)
def A032924(n): return int(bin(m:=n+1)[3:], 3) + (3**(m.bit_length()-1)-1>>1) # Chai Wah Wu, Oct 13 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|