login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032924 Numbers whose ternary expansion contains no 0. 41
1, 2, 4, 5, 7, 8, 13, 14, 16, 17, 22, 23, 25, 26, 40, 41, 43, 44, 49, 50, 52, 53, 67, 68, 70, 71, 76, 77, 79, 80, 121, 122, 124, 125, 130, 131, 133, 134, 148, 149, 151, 152, 157, 158, 160, 161, 202, 203, 205, 206, 211, 212, 214, 215, 229, 230, 232, 233, 238, 239 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Complement of A081605. - Reinhard Zumkeller, Mar 23 2003
Subsequence of A154314. - Reinhard Zumkeller, Jan 07 2009
The first 28 terms are the range of A059852 (Morse codes for letters, when written in base 3) union {44, 50} (which correspond to Morse codes of Ü and Ä). Subsequent terms represent the Morse code of other symbols in the same coding. - M. F. Hasler, Jun 22 2020
LINKS
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, 10 (2007), Article 07.1.5., 1-13.
Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., 274 (2004), 147-160.
FORMULA
a(n) = A107680(n) + A107681(n). - Reinhard Zumkeller, May 20 2005
A081604(A107681(n)) <= A081604(A107680(n)) = A081604(a(n)) = A000523(n+1). - Reinhard Zumkeller, May 20 2005
A077267(a(n)) = 0. - Reinhard Zumkeller, Mar 02 2008
a(1)=1, a(n+1) = f(a(n)+1,f(a(n)+1) where f(x,y) = if x<3 and x<>0 then y, else if x mod 3 = 0 then f(y+1,y+1), else f(floor(x/3),y). - Reinhard Zumkeller, Mar 02 2008
a(2*n) = a(2*n-1)+1, n>0. - Zak Seidov, Jul 27 2009
A212193(a(n)) = 0. - Reinhard Zumkeller, May 04 2012
a(2*n+1) = 3*a(n)+1. - Robert Israel, Aug 05 2015
G.f.: x/(1-x)^2 + Sum_{m >= 1} 3^(m-1)*x^(2^(m+1)-1)/((1-x^(2^m))*(1-x))). - Robert Israel, Aug 04 2015
A065361(a(n)) = n. - Rémy Sigrist, Feb 06 2023
MAPLE
f:= proc(n) local L, i, m;
L:= convert(n, base, 2);
m:= nops(L);
add((1+L[i])*3^(i-1), i=1..m-1);
end proc:
map(f, [$2..101]); # Robert Israel, Aug 04 2015
MATHEMATICA
Select[Range@ 240, Last@ DigitCount[#, 3] == 0 &] (* Michael De Vlieger, Aug 05 2015 *)
Flatten[Table[FromDigits[#, 3]&/@Tuples[{1, 2}, n], {n, 5}]] (* Harvey P. Dale, May 28 2016 *)
PROG
(Haskell)
a032924 n = a032924_list !! (n-1)
a032924_list = iterate f 1 where
f x = 1 + if r < 2 then x else 3 * f x' where (x', r) = divMod x 3
-- Reinhard Zumkeller, Mar 07 2015, May 04 2012
(PARI) apply( {A032924(n)=if(n<3, n, 3*self()((n-1)\2)+2-n%2)}, [1..99]) \\ M. F. Hasler, Jun 22 2020
(PARI) a(n) = fromdigits(apply(d->d+1, binary(n+1)[^1]), 3); \\ Kevin Ryde, Jun 23 2020
(Python)
def a(n): return sum(3**i*(int(b)+1) for i, b in enumerate(bin(n+1)[:2:-1]))
print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Aug 15 2022
(Python)
def is_A032924(n):
while n > 2:
n, r = divmod(n, 3)
if r==0: return False
return n > 0
print([n for n in range(250) if is_A032924(n)]) # M. F. Hasler, Feb 15 2023
(Python)
def A032924(n): return int(bin(m:=n+1)[3:], 3) + (3**(m.bit_length()-1)-1>>1) # Chai Wah Wu, Oct 13 2023
CROSSREFS
Zeroless numbers in some other bases <= 10: A000042 (base 2), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9), A052382 (base 10).
Sequence in context: A072920 A330708 A107899 * A005125 A232832 A272195
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 15:59 EDT 2024. Contains 375938 sequences. (Running on oeis4.)