login
A077267
Number of zeros in base-3 expansion of n.
40
1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 3, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 3, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 4, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 1, 1, 2, 1, 1, 3, 2, 2, 2, 1, 1, 2
OFFSET
0,10
LINKS
F. T. Adams-Watters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6
Eric Weisstein's World of Mathematics, Ternary.
FORMULA
a(1)=a(2)=0; a(3n)=a(n)+1; a(3n+1)=a(3n+2)=a(n). a(3^n-2)=a(3^n-1)=0; a(3^n)=n. a(n)=A077266(n, 3).
a(n) + A062756(n) + A081603(n) = A081604(n). - Reinhard Zumkeller, Mar 23 2003
G.f.: (Sum_{k>=0} x^(3^(k+1))/(1 + x^(3^k) + x^(2*3^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
a(n) = A079978(n) if n < 3, A079978(n) + a(floor(n/3)) otherwise. - Reinhard Zumkeller, Feb 21 2013
EXAMPLE
a(8)=0 since 8 written in base 3 is 22 with 0 zeros;
a(9)=2 since 9 written in base 3 is 100 with 2 zeros;
a(10)=1 since 10 written in base 3 is 101 with 1 zero.
MATHEMATICA
Table[Count[IntegerDigits[n, 3], 0], {n, 0, 6!}] (* Vladimir Joseph Stephan Orlovsky, Jul 25 2009 *)
DigitCount[Range[0, 110], 3, 0] (* Harvey P. Dale, Jul 04 2021 *)
PROG
(Haskell)
a077267 n = a079978 n + if n < 3 then 0 else a077267 (n `div` 3)
-- Reinhard Zumkeller, Feb 21 2013
KEYWORD
base,nonn
AUTHOR
Henry Bottomley, Nov 01 2002
EXTENSIONS
a(0)=1 added, offset changed to 0 and b-file adjusted by Reinhard Zumkeller, Feb 21 2013
Wrong formula deleted by Reinhard Zumkeller, Feb 21 2013
STATUS
approved