login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077269
Number of connected squarefree graphs on n nodes.
11
1, 1, 2, 3, 8, 19, 57, 186, 740, 3389, 18502, 120221, 932260, 8596844, 93762704, 1201732437, 17992683043, 313098431306, 6305419392541
OFFSET
1,3
COMMENTS
From R. J. Mathar, Apr 04 2022 (Start)
The sequence contains the row sums of the number of connected squarefree graphs on V vertices with E edges, the triangle with V>=0, E>=0:
1 ;
1 ;
0 1;
0 0 1 1;
0 0 0 2 1;
0 0 0 0 3 4 1;
0 0 0 0 0 6 9 4;
0 0 0 0 0 0 11 24 17 5;
0 0 0 0 0 0 0 23 61 66 31 5;
0 0 0 0 0 0 0 0 47 169 248 192 74 10;
(End)
LINKS
Felix Arends, Joel Ouaknine, and Charles W. Wampler, On Searching for Small Kochen-Specker Vector Systems (extended version), arXiv:1111.3301 [quant-ph], 2011.
CombOS - Combinatorial Object Server, Generate graphs
R. J. Mathar, Illustrations
Eric Weisstein's World of Mathematics, Square-Free Graph
FORMULA
Inverse Euler transform of A006786. - Andrew Howroyd, Nov 03 2017
MATHEMATICA
A006786 = {1, 2, 4, 8, 18, 44, 117, 351, 1230, 5069, 25181, 152045, 1116403, 9899865, 104980369, 1318017549, 19427531763, 333964672216, 6660282066936};
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
EULERi[A006786] (* Jean-François Alcover, Aug 18 2018, after Andrew Howroyd *)
CROSSREFS
Cf. A006786, A243243 (complement).
Sequence in context: A148040 A148041 A148042 * A294431 A148043 A321255
KEYWORD
nonn,more
AUTHOR
Eric W. Weisstein, Nov 01 2002
EXTENSIONS
More terms from Jim Nastos, Aug 27 2004
4 more terms from Vladeta Jovovic, May 17 2008
a(18)-a(19) using Brendan McKay's extension to A006786 by Alois P. Heinz, Mar 11 2018
STATUS
approved