Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Apr 06 2022 05:24:37
%S 1,1,2,3,8,19,57,186,740,3389,18502,120221,932260,8596844,93762704,
%T 1201732437,17992683043,313098431306,6305419392541
%N Number of connected squarefree graphs on n nodes.
%C From _R. J. Mathar_, Apr 04 2022 (Start)
%C The sequence contains the row sums of the number of connected squarefree graphs on V vertices with E edges, the triangle with V>=0, E>=0:
%C 1 ;
%C 1 ;
%C 0 1;
%C 0 0 1 1;
%C 0 0 0 2 1;
%C 0 0 0 0 3 4 1;
%C 0 0 0 0 0 6 9 4;
%C 0 0 0 0 0 0 11 24 17 5;
%C 0 0 0 0 0 0 0 23 61 66 31 5;
%C 0 0 0 0 0 0 0 0 47 169 248 192 74 10;
%C (End)
%H Felix Arends, Joel Ouaknine, and Charles W. Wampler, <a href="https://arxiv.org/abs/1111.3301">On Searching for Small Kochen-Specker Vector Systems</a> (extended version), arXiv:1111.3301 [quant-ph], 2011.
%H CombOS - Combinatorial Object Server, <a href="http://combos.org/nauty">Generate graphs</a>
%H R. J. Mathar, <a href="/A077269/a077269.pdf">Illustrations</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Square-FreeGraph.html">Square-Free Graph</a>
%H <a href="/index/Sq#square_free">Index entries for sequences of squarefree graphs</a>
%F Inverse Euler transform of A006786. - _Andrew Howroyd_, Nov 03 2017
%t A006786 = {1, 2, 4, 8, 18, 44, 117, 351, 1230, 5069, 25181, 152045, 1116403, 9899865, 104980369, 1318017549, 19427531763, 333964672216, 6660282066936};
%t mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
%t EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
%t EULERi[A006786] (* _Jean-François Alcover_, Aug 18 2018, after _Andrew Howroyd_ *)
%Y Cf. A006786, A243243 (complement).
%K nonn,more
%O 1,3
%A _Eric W. Weisstein_, Nov 01 2002
%E More terms from _Jim Nastos_, Aug 27 2004
%E 4 more terms from _Vladeta Jovovic_, May 17 2008
%E a(18)-a(19) using _Brendan McKay_'s extension to A006786 by _Alois P. Heinz_, Mar 11 2018