login
A077265
Number of cycles in the n-th order prism graph.
4
14, 28, 52, 94, 170, 312, 584, 1114, 2158, 4228, 8348, 16566, 32978, 65776, 131344, 262450, 524630, 1048956, 2097572, 4194766, 8389114, 16777768, 33555032, 67109514, 134218430, 268436212, 536871724, 1073742694, 2147484578, 4294968288, 8589935648, 17179870306
OFFSET
3,1
COMMENTS
Also the number of cycles in the n-th order web graph. - Eric W. Weisstein, Dec 17 2013
Also the number of minimal edge cuts in the n-dipyramidal graph. - Eric W. Weisstein, Oct 30 2024
A subsequence of A290699.
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Dipyramidal Graph.
Eric Weisstein's World of Mathematics, Prism Graph.
Eric Weisstein's World of Mathematics, Web Graph.
FORMULA
a(n) = 2^n+n*(n-1). - Eric W. Weisstein, Dec 16 2013
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4). - Colin Barker, May 06 2014
G.f.: -2*x^3*(6*x^3-19*x^2+21*x-7) / ((x-1)^3*(2*x-1)). - Colin Barker, May 06 2014
a(n) = A000079(n) + A002378(n-1). - Wesley Ivan Hurt, May 07 2014
a(n) = 2*A132109(n-1). - R. J. Mathar, May 23 2016
MAPLE
A077265:=n->2^n+n*(n-1); seq(A077265(n), n=3..40); # Wesley Ivan Hurt, May 07 2014
MATHEMATICA
Table[2^n + n*(n - 1), {n, 3, 40}] (* Wesley Ivan Hurt, May 07 2014 *)
LinearRecurrence[{5, -9, 7, -2}, {14, 28, 52, 94}, 40] (* Harvey P. Dale, Mar 17 2019 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, Nov 01 2002
EXTENSIONS
More terms from Eric W. Weisstein, Dec 16 2013
STATUS
approved