login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260699
a(2n+6) = a(2n) + 12*n + 20, a(2n+1) = (n+1)*(2*n+1), with a(0)=0, a(2)=2, a(4)=9.
5
0, 1, 2, 6, 9, 15, 20, 28, 34, 45, 53, 66, 76, 91, 102, 120, 133, 153, 168, 190, 206, 231, 249, 276, 296, 325, 346, 378, 401, 435, 460, 496, 522, 561, 589, 630, 660, 703, 734, 780, 813, 861, 896, 946, 982, 1035, 1073
OFFSET
0,3
COMMENTS
Sequence extended to left:
..., 36, 29, 21, 16, 10, 6, 3, 1, 0, 0, 1, 2, 6, 9, 15, 20, 28, 34, ...,
where 0, 1, 3, 6, 10, 16, 21, 29, 36, 46, ... is A260708.
After 2, if a(n) is prime then n == 4 (mod 6).
a(n) is a square for n = 0, 1, 4, 49, 52, 192, 1681, 4948, 57121, 60388, 221952, 1940449, 5710372, ...
FORMULA
G.f.: x*(1 + x + 3*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6)/((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9).
a(2*k+1) = A000217(2*k+1) by definition; for even indices:
a(6*k) = 2*k*(9*k + 1),
a(6*k+2) = 2*(9*k^2 + 7*k + 1),
a(6*k+4) = 18*k^2 + 26*k + 9.
a(n) = n*(n + 1)/2 - (1 + (-1)^n)*floor(n/6 + 2/3)/2. [Bruno Berselli, Nov 18 2015]
EXAMPLE
a(0) = 0,
a(1) = 1*1 = 1,
a(2) = 2,
a(3) = 2*3 = 6,
a(4) = 9,
a(5) = 3*5 = 15,
a(6) = a(0) + 12*0 + 20 = 20, etc.
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 1, 2, 6, 9, 15, 20, 28, 34}, 50] (* Bruno Berselli, Nov 18 2015 *)
PROG
(Magma) [n*(n+1)/2-(1+(-1)^n)*Floor(n/6+2/3)/2: n in [0..50]]; // Bruno Berselli, Nov 18 2015
(Sage) [n*(n+1)/2-(1+(-1)^n)*floor(n/6+2/3)/2 for n in (0..50)] # Bruno Berselli, Nov 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 16 2015
EXTENSIONS
Edited by Bruno Berselli, Nov 17 2015
STATUS
approved