OFFSET
1,1
COMMENTS
For all m >= a(n) there are at least n primes between m and 2m exclusively. This calculation relies on the fact that pi(2m) - pi(m) > m/(3*log(m)) for m >= 5. This is one more than the terms of A084139 with offset changed from 0 to 1.
For n > 5889, pi(2n) - pi(n) > f(2, 2n) - f(3, n) where f(k, x) = x/log x * (1 + 1/log x + k/(log x)^2). This may be useful for checking larger terms. The constant 3 can be improved at the cost of an increase in the constant 5889. - Charles R Greathouse IV, May 02 2012
A168421(n) = nextprime(a(n)), where nextprime(x) is the next prime >= x. - John W. Nicholson, Dec 21 2012
a(1) = ceiling((A104272(1)+1)/2) modifies the only even prime, 2; which has been stated, in Formula, as a(1) = A104272(1); for all others, a(n) = (A104272(n)+1)/2 = ceiling ((A104272(n)+1)/2). - John W. Nicholson, Dec 24 2012
Srinivasan's Lemma (2014): previousprime(a(n)) = p_(k-n) < (p_k)/2, where the n-th Ramanujan Prime R_n is the k-th prime p_k, and with n > 1. Proof: By the minimality of R_n, the interval ((p_k)/2,p_k] contains exactly n primes, so p_(k-n) < (p_k)/2. - Copied and adapted from a comment by Jonathan Sondow in A168421 by John W. Nicholson, Feb 17 2015
REFERENCES
Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, 1991, p. 140.
Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag, 2004, p. 181.
LINKS
Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv version, arXiv:1212.2785 [math.NT], 2012.
Anitha Srinivasan, An upper bound for Ramanujan primes, Integers, 19 (2014), #A19.
Eric Weisstein's World of Mathematics, Bertrand's Postulate.
FORMULA
a(n) = ceiling((A104272(n)+1)/2) for n >= 1. - John W. Nicholson, Dec 24 2012
EXAMPLE
a(11)=51 since there are at least 11 primes between m and 2m for all m >= 51 and this is not true for any m < 51. Although a(100)=720 is not listed, for all m >= 720, there are at least 100 primes between m and 2m.
MATHEMATICA
nn = 60;
R = Table[0, {nn}]; s = 0;
Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k], {k, Prime[3 nn]}];
A104272 = R + 1;
CROSSREFS
KEYWORD
nonn
AUTHOR
Harry J. Smith, May 15 2003
STATUS
approved