

A108954


a(n) = pi(2*n)  pi(n). Number of primes in the interval (n,2n].


14



1, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, 4, 5, 4, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 9, 10, 9, 9, 10, 10, 9, 9, 10, 10, 11, 12, 11, 12, 13, 13, 14, 14, 13, 13, 12, 12, 12, 13, 13, 14, 13, 13, 14, 15, 14, 14, 13, 13, 14, 15, 15, 15, 15, 15, 15, 16, 15, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Bertrand's postulate is equivalent to the formula a(n) >= 1 for all positive integers n.  Jonathan Vos Post, Jul 30 2008
Number of distinct prime factors > n of binomial(2*n,n).  T. D. Noe, Aug 18 2011
f(2, 2n)  f(3, n) < a(n) < f(3, 2n)  f(2, n) for n > 5889 where f(k, x) = x/log x * (1 + 1/log x + k/(log x)^2). The constant 3 can be improved.  Charles R Greathouse IV, May 02 2012
For n >= 2, a(n) is the number of primes appearing in the 2nd row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.  Wesley Ivan Hurt, May 17 2021


REFERENCES

F. Irschebeck, Einladung zur Zahlentheorie, BI Wissenschaftsverlag 1992, p. 40


LINKS



FORMULA

a(n) = Sum_{k=1..n} A010051(2*nk+1).


MAPLE

numtheory[pi](2*n)numtheory[pi](n) ;


MATHEMATICA

Table[Length[Select[Transpose[FactorInteger[Binomial[2 n, n]]][[1]], # > n &]], {n, 100}] (* T. D. Noe, Aug 18 2011 *)
f[n_] := Length@ Select[ Range[n + 1, 2n], PrimeQ]; Array[f, 100] (* Robert G. Wilson v, Mar 20 2012 *)
Table[PrimePi[2n]PrimePi[n], {n, 90}] (* Harvey P. Dale, Mar 11 2013 *)


PROG

(PARI) g(n) = for(x=1, n, y=primepi(2*x)primepi(x); print1(y", "))


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



