|
|
A108951
|
|
Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).
|
|
148
|
|
|
1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence is a permutation of A025487.
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015
|
|
LINKS
|
|
|
FORMULA
|
Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
Further identities:
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
(End)
(End)
|
|
EXAMPLE
|
a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
|
|
MATHEMATICA
|
a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
|
|
PROG
|
(Scheme, with Antti Karttunen's IntSeq-library for memoizing definec-macro)
(Sage)
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
def p(f):
return sharp_primorial(f[0])^f[1]
[prod(p(f) for f in factor(n)) for n in range (1, 51)]
(PARI) primorial(n)=prod(i=1, primepi(n), prime(i))
(Python)
from sympy import primerange, factorint
from operator import mul
def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
def a(n):
f = factorint(n)
return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
|
|
CROSSREFS
|
Cf. A034386, A002110, A025487, A048673, A064216, A064989, A085082, A122111, A124859, A161360, A181811, A181812, A181814, A181815, A181817, A181819, A181822, A238690, A283477, A283478, A307035, A324886, A324887, A324888, A324896, A325226, A329040, A329046, A329047, A329344, A329348, A329349, A329378, A329382, A329600, A329602, A329605, A329607, A329615, A329616, A329617, A329619, A329622, A319627, A329647, A331292, A337474, A346108, A346109, A344698, A344699.
|
|
KEYWORD
|
mult,easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
|
|
STATUS
|
approved
|
|
|
|