The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x). 148
 1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is a permutation of A025487. And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014 A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015 LINKS Amiram Eldar, Table of n, a(n) for n = 1..2370 (terms 1..256 from Antti Karttunen) FORMULA Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))... Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014] From Antti Karttunen, Jul 21 2014: (Start) a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)). a(n) = n * A181811(n). a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020] a(n) = A181812(A048673(n)). Other identities: A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.] A071178(a(n)) = A071178(n). [And also its exponent.] a(2^n) = 2^n. [Fixes the powers of two.] A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.] (End) From Antti Karttunen, Nov 19 2019: (Start) Further identities: a(A307035(n)) = A000142(n). a(A003418(n)) = A181814(n). a(A025487(n)) = A181817(n). a(A181820(n)) = A181822(n). a(A019565(n)) = A283477(n). A001221(a(n)) = A061395(n). A001222(a(n)) = A056239(n). A181819(a(n)) = A122111(n). A124859(a(n)) = A181821(n). A085082(a(n)) = A238690(n). A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents) A000188(a(n)) = A329602(n). (square root of the greatest square divisor) A072411(a(n)) = A329378(n). (LCM of exponents of prime factors) A005361(a(n)) = A329382(n). (product of exponents of prime factors) A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors) A000005(a(n)) = A329605(n). (number of divisors) A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors) A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors) A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors) A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors) A276086(a(n)) = A324886(n). (prime product form of primorial base expansion) A324580(a(n)) = A324887(n). A276150(a(n)) = A324888(n). (digit sum in primorial base) A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base) A243055(a(n)) = A329343(n). A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base) A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base) A328114(a(n)) = A329344(n). (maximal digit in primorial base) A062977(a(n)) = A325226(n). A097248(a(n)) = A283478(n). A324895(a(n)) = A324896(n). A324655(a(n)) = A329046(n). A327860(a(n)) = A329047(n). A329601(a(n)) = A329607(n). (End) a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019 From Antti Karttunen, Jul 09 2021: (Start) a(n) = A346092(n) + A346093(n). a(n) = A346108(n) - A346109(n). a(A342012(n)) = A004490(n). a(A337478(n)) = A336389(n). A336835(a(n)) = A337474(n). A342002(a(n)) = A342920(n). A328571(a(n)) = A346091(n). A328572(a(n)) = A344592(n). (End) EXAMPLE a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24 a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5). MATHEMATICA a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *) Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *) PROG (Scheme, with Antti Karttunen's IntSeq-library for memoizing definec-macro) (definec (A108951 n) (if (= 1 n) n (* n (A108951 (A064989 n))))) ;; Antti Karttunen, Jul 21 2014 (Sage) def sharp_primorial(n): return sloane.A002110(prime_pi(n)) def p(f):     return sharp_primorial(f)^f [prod(p(f) for f in factor(n)) for n in range (1, 51)] # Giuseppe Coppoletta, Feb 07 2015 (PARI) primorial(n)=prod(i=1, primepi(n), prime(i)) a(n)=my(f=factor(n)); prod(i=1, #f~, primorial(f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015 (Python) from sympy import primerange, factorint from operator import mul def P(n): return reduce(mul, [i for i in primerange(2, n + 1)]) def a(n):     f = factorint(n)     return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f]) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017 CROSSREFS Cf. A319626, A329900 (left inverses). Cf. A034386, A002110, A025487, A048673, A064216, A064989, A085082, A122111, A124859, A181811, A181812, A181814, A181815, A181817, A181819, A181822, A238690, A283477, A283478, A307035, A324886, A324887, A324888, A324896, A325226, A329040, A329046, A329047, A329344, A329348, A329349, A329378, A329382, A329600, A329602, A329605, A329607, A329615, A329616, A329617, A329619, A329622, A319627, A329647, A331292, A337474, A346108, A346109, A344698, A344699. Sequence in context: A329886 A064538 A002790 * A181822 A346107 A174940 Adjacent sequences:  A108948 A108949 A108950 * A108952 A108953 A108954 KEYWORD mult,easy,nonn AUTHOR Paul Boddington, Jul 21 2005 EXTENSIONS More terms computed by Antti Karttunen, Jul 21 2014 The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015 Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 12:21 EDT 2022. Contains 355075 sequences. (Running on oeis4.)