login
A329349
Number of occurrences of the largest primorial present in the greedy sum of primorials adding to A108951(n).
5
1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 6, 2, 1, 2, 1, 4, 6, 2, 1, 1, 4, 2, 1, 4, 1, 1, 1, 1, 6, 2, 2, 4, 1, 2, 6, 1, 1, 1, 1, 4, 5, 2, 1, 3, 1, 8, 6, 4, 1, 2, 2, 8, 6, 2, 1, 3, 1, 2, 3, 2, 1, 12, 1, 4, 6, 5, 1, 1, 1, 2, 2, 4, 16, 12, 1, 2, 6, 2, 1, 2, 1, 2, 6, 8, 1, 10, 12, 4, 6, 2, 1, 6, 1, 2, 2, 1, 1, 12, 1, 8, 1
OFFSET
1,4
COMMENTS
The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.
FORMULA
a(n) = A276153(A108951(n)) = A071178(A324886(n)).
a(n) <= A324888(n).
EXAMPLE
For n = 21 = 3 * 7, A108951(21) = A034386(3) * A034386(7) = 6 * 210, so the factor of the largest primorial present (210) in the greedy sum is 6 (as 1260 = 210 + 210 + 210 + 210 + 210 + 210), thus a(21) = 6.
For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the largest primorial in the sum is 1, we have a(24) = 1.
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A276153(n) = { my(e=0, p=2); while(n, e=n%p; n = n\p; p = nextprime(1+p)); (e); };
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A071178(n) = if(1==n, 0, my(es=factor(n)[, 2]); es[#es]);
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2019
STATUS
approved