login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329349 Number of occurrences of the largest primorial present in the greedy sum of primorials adding to A108951(n). 5
1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 6, 2, 1, 2, 1, 4, 6, 2, 1, 1, 4, 2, 1, 4, 1, 1, 1, 1, 6, 2, 2, 4, 1, 2, 6, 1, 1, 1, 1, 4, 5, 2, 1, 3, 1, 8, 6, 4, 1, 2, 2, 8, 6, 2, 1, 3, 1, 2, 3, 2, 1, 12, 1, 4, 6, 5, 1, 1, 1, 2, 2, 4, 16, 12, 1, 2, 6, 2, 1, 2, 1, 2, 6, 8, 1, 10, 12, 4, 6, 2, 1, 6, 1, 2, 2, 1, 1, 12, 1, 8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537

Index entries for sequences computed from indices in prime factorization

Index entries for sequences related to primorial base

Index entries for sequences related to primorial numbers

FORMULA

a(n) = A276153(A108951(n)) = A071178(A324886(n)).

a(n) <= A324888(n).

EXAMPLE

For n = 21 = 3 * 7, A108951(21) = A034386(3) * A034386(7) = 6 * 210, so the factor of the largest primorial present (210) in the greedy sum is 6 (as 1260 = 210 + 210 + 210 + 210 + 210 + 210), thus a(21) = 6.

For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the largest primorial in the sum is 1, we have a(24) = 1.

PROG

(PARI)

A034386(n) = prod(i=1, primepi(n), prime(i));

A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951

A276153(n) = { my(e=0, p=2); while(n, e=n%p; n = n\p; p = nextprime(1+p)); (e); };

A329349(n) = A276153(A108951(n));

(PARI)

A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

A324886(n) = A276086(A108951(n));

A071178(n) = if(1==n, 0, my(es=factor(n)[, 2]); es[#es]);

A329349(n) = A071178(A324886(n));

CROSSREFS

Cf. A002110, A034386, A071178, A108951, A276086, A276153, A324886, A324888, A329040, A329343, A329344, A329345, A329348.

Sequence in context: A025903 A175327 A101211 * A329348 A329344 A081652

Adjacent sequences:  A329346 A329347 A329348 * A329350 A329351 A329352

KEYWORD

nonn

AUTHOR

Antti Karttunen, Nov 11 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 00:10 EDT 2021. Contains 345403 sequences. (Running on oeis4.)