The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101211 Triangle read by rows: n-th row is length of run of leftmost 1's, followed by length of run of 0's, followed by length of run of 1's, etc., in the binary representation of n. 32
 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 4, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 3, 1, 1, 4, 1, 5, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Row n has A005811(n) elements. In rows 2^(k-1)..2^k-1 we have all the compositions (ordered partitions) of k. Other orderings of compositions: A066099, A108244, and A124734. - Jason Kimberley, Feb 09 2013 A043276(n) = largest term in n-th row. - Reinhard Zumkeller, Dec 16 2013 From the first comment it follows that we have a bijection between the positive integers and the set of all compositions. - Emeric Deutsch, Jul 11 2017 From Robert Israel, Jan 23 2018: (Start) If n is even, row 2*n is row n with its last element incremented by 1, and row 2*n+1 is row n with 1 appended. If n is odd, row 2*n+1 is row n with its last element incremented by 1, and row 2*n is row n with 1 appended. (End) LINKS Antti Karttunen, The rows 1..1023 of the table, flattened FORMULA a(n) = A227736(A227741(n)) = A227186(A056539(A227737(n)),A227740(n)) - Antti Karttunen, Jul 27 2013 EXAMPLE Since 9 is 1001 in binary, the 9th row is 1,2,1. Since 11 is 1011 in binary, the 11th row is 1,1,2. Triangle begins: 1; 1,1; 2; 1,2; 1,1,1; 2,1; 3; 1,3; MAPLE # Maple program due to W. Edwin Clark: Runs := proc (L) local j, r, i, k; j := 1: r[j] := L: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: # Row n is obtained with the command c(n). - Emeric Deutsch, Jul 03 2017 # Maple program due to W. Edwin Clark, yielding the integer ind corresponding to a given composition (the index of the composition): ind := proc (x) local X, j, i: X := NULL: for j to nops(x) do if type(j, odd) then X := X, seq(1, i = 1 .. x[j]) end if: if type(j, even) then X := X, seq(0, i = 1 .. x[j]) end if end do: X := [X]: add(X[i]*2^(nops(X)-i), i = 1 .. nops(X)) end proc; # Clearly, ind(c(n))= n. - Emeric Deutsch, Jan 23 2018 MATHEMATICA Table[Length /@ Split@ IntegerDigits[n, 2], {n, 38}] // Flatten (* Michael De Vlieger, Jul 11 2017 *) PROG (Scheme, two variants) (define (A101211 n) (A227736 (A227741 n))) (define (A101211v2 n) (A227186bi (A056539 (A227737 n)) (A227740 n))) ;; Scheme-implementation for A227186bi can be found under A227186. - Antti Karttunen, Jul 27 2013 (Haskell) import Data.List (group) a101211 n k = a101211_tabf !! (n-1) !! (k-1) a101211_row n = a101211_tabf !! (n-1) a101211_tabf = map (reverse . map length . group) \$ tail a030308_tabf -- Reinhard Zumkeller, Dec 16 2013 CROSSREFS A070939(n) gives the sum of terms in row n, while A167489(n) gives the product of its terms. A090996 gives the first column. A227736 lists the terms of each row in reverse order. Cf. also A227186. Cf. A030308, A175911. Sequence in context: A245548 A025903 A175327 * A329349 A329348 A329344 Adjacent sequences:  A101208 A101209 A101210 * A101212 A101213 A101214 KEYWORD nonn,base,tabf AUTHOR Leroy Quet, Dec 13 2004 EXTENSIONS More terms from Emeric Deutsch, Apr 12 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 12:01 EST 2020. Contains 331295 sequences. (Running on oeis4.)